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1. Introduction

1.1. Short Introduction
This review consists of four parts, each treating a different

aspect of chemical graph theory: (i) recent developments
in molecular connectivity theory, (ii) drug design using a
chemical graph method, (iii) a chemical graph formulation
of chemical kinetics, and (iv) recent studies on biomacro-
molecules using chemical graph theory. This broad study
aims to give the reader broad and updated information about
recent chemical graph methods to widen the horizons of these
methods, as already delineated in previous reviews on the
subject. Not every recent aspect of chemical graph theory
will be covered here, since this would entail writing a heavy
book; nevertheless, this review together with the two cited
reviews1,2 on chemical graph theory will surely cover a great
deal of the continually growing field of mathematical
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chemistry. The recent developments in molecular connectiv-
ity theory treated here are those which have accomplished a
graphical encoding of the core electrons of atoms with
principal quantum numbern g 2 as well as encoding
suppressed hydrogen atoms by the use of a perturbation
parameter instead of the introduction of any new graph theory
concepts. The drug design methodology outlined here takes
molecular connectivity theory as its starting ingredient in
developing completely new descriptors, such as the charge
descriptors and the geometrical topological indices, and then
through a linear discriminant analysis produces design
distribution diagrams for the discriminant functions. The
application of graph theory to chemical kinetics treated here
achieves not only the modeling of reaction networks but also
the delineation of chemical kinetics equations. The last topic
shows how graph theory can be advantageously applied in
modeling biomacromolecules, even including their three-
dimensional structure.

The reader will notice here and there throughout the four
main sections of this review some repetitions and even
discontinuities. These could not be avoided since the review
attempts to offer a broad overview of what is happening in
chemical graph theory. However, the entire review is held
together by a common aim, i.e., recounting how properties
and reactivities of molecules can be modeled with completely
new concepts drawn from mathematical graph theory and,
even more broadly, from topology.

1.2. Main Graph Concepts
Graph theory is a branch of mathematics that has to do

with topology (or rubber-sheet geometry, which is concerned
with the invariant properties of a rubber sheet) and combi-
natorics,3,4 and it deals with the way objects are connected.
It is centered on the concept of a graph. Agraph Gcan be
informally defined as a set ofV vertices (or points) with a
set ofE edges (also connections, or lines) that connect these
vertices; that is,G ) (V, E). More formally, a graph is a set
of vertices,V, and a set of unordered pairs of elements ofV,
called edges,E. Thus a graph is determined by the set of
vertices and by the set of edges joining the vertices and not
by the particular appearance of the configuration. A graph
obeys no Euclidean metrics. But, following Pythagoras’
eVerything is number, graphs also have their numbers. The
degree of aVertex in a graph is the number of edges that
contain it. The order of a graph is the numberp of its vertices.
The distancebetween two vertices is the number of edges
in the shortest path joining the two vertices.AdjacentVertices
in a graph are vertices joined by an edge, whileadjacent
edgesare edges having a vertex in common. Awalk is an
alternating succession of vertices and edges that starts with
a vertex and ends with a vertex. Apath is a walk in which
no vertex occurs more than once. Aconnected graphhas
every pair of vertices joined by a path. Atree is a connected
acyclic graph. End vertices are calledterminals, and a tree
with two terminals is called achain. A tree with the
maximum possible number of terminals given its number of
vertices and edges is astar. A tree that includes a vertex
which is different from the others, theroot, is arooted tree.
A cyclic graph includes at least one walk that begins and
ends at the same vertex and in which every vertex is visited
no more than once. Asubgraph Gs is obtained when edges
and vertices are removed from a graphG without removing
the end points of any unremoved edge. Two graphs are
isomorphicif a one-to-one correspondence exists between

the vertices and edges of the first graph and the correspond-
ing ones of the second graph.

Chemical graph theory5-16 applies graph theory to chem-
istry and centers its attention on the concept of achemical
graph, also known as amolecular graph, structural graph,
or constitutional graph, all of which denote a graph where
atoms and bonds are represented by vertices and edges,
respectively. Actually, topological concepts have also been
used in chemistry, and in fact the topology of a molecule
rather than its geometry determines the form of the well-
known Hückel molecular orbitals.17 The degree of a vertex
in a chemical graph is normally called itsValence. Clearly,
double bonds or lone-pair electrons cannot be described by
a graph, so pseudographs or general graphs have also been
used to represent molecules. Apseudograph(or general
graph)G′ ) (V, E′) may containmultiple edges(E′) between
pairs of vertices andself-connections (or loops), which are
edges from a vertex to itself.1,2 The degree of a vertex in a
pseudograph is again the number of edges containing it, with
the proviso that self-connections or loops contribute twice
to its degree. Every graph is a pseudograph, but not every
pseudograph is a graph. Some mathematicians reserve the
term simple graphfor a graph with no multiple edges and
loops. A chemical pseudographis a general graph where
vertices and edges encode atoms and bonds, respectively.
The degree of a vertex in a chemical pseudograph is normally
called its valence. The pseudograph concept can encode
multiple bonds and lone-pair electrons with multiple edges
and loops, respectively.1,18 Usually chemical graphs and
pseudographs have depleted hydrogen atoms (also, hydrogen-
suppressed graphs or HS graphs), which are simply molecular
graphs from which hydrogens and their connecting bonds
have been removed.

The chemical graph and the pseudograph of 1,2 difluo-
roethylene are shown in, respectively, the top and bottom
of Figure 1. Note that the chemical graph in Figure 1 can
also encode other molecules such as butane, dichloroethane,
butadiene, etc. and that the general graph in Figure 1, even
though more selective, can actually still encode any 1,2
XCHdCHX dihaloethylene, where X) F, Cl, Br, or I. A
characteristic of chemical graphs and pseudographs is the
impossibility for them to differentiate among different spatial
isomers and especially between thecis and trans isomers
around a double bond. This last problem has been partially
solved in molecular connectivity theory by the concept of
virtual rings.1 The degree of the vertices in the graph at the
top of Figure 1 is two for the interior vertices and one for
the extreme vertices, while in the corresponding pseudograph
it is three for the interior vertices and seven for the extreme
vertices. Another concept from graph theory used in this
study is that of a complete graph.3,4,18,19A complete graph,

Figure 1. (A, top) The chemical graph of 1,2-difluoroethylene.
(B, bottom) The chemical pseudograph of 1,2-difluoroethylene.
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Kp, of orderp, is a graph where every pair of its vertices is
adjacent. A complete graph is alwaysr-regular; that is, it
has all of its vertices with the same degreer, and indeedr
) p - 1. Clearly, a complete graph is always regular, but
the contrary is not true; that is, pure (nonbranched) cyclic
graphs are regular.

Six complete graphs,K1, K2, K3, K4, K5, andK6, are shown
in Figure 2. Here you can notice thatK1 is just a vertex, and
this means that the vertices of graphs, as normally used in
current studies, can be interpreted asK1 complete graphs. A
null K0 complete graph has also been defined as a graph
with no edges and vertices.20 This null graph could be used
to encode the depleted hydrogen atoms; that is, a H-
suppressed chemical graph is just a set ofK0 andK1 complete
graphs and a set of edges connecting theK1 graphs.

Graphs have been considered as two-dimensional objects
even though important information about three-dimensional
structure is implicit in the set of connections contained in a
chemical graph. In fact, graphs containing only-CH2-
clearly designate a cyclic molecule, and graphs containing
quaternary (>C<) and tertiary (-CH<) carbons just as
clearly describe a molecule with some degree of steric
crowding. However, it is not inappropriate here to emphasize
again what a graph is: a mathematical object that represents
the structure of the various interconnections of a molecule.
A graph is essentially a statement about vertices and edges
and their relationships; it is not a physical representation of
a molecule. Dimension in graph theory does not have the
same meaning as the concept of dimension in physics. The
claim that molecular graphs do not encode any dimensional
information about molecular structure is irrelevant here. A
more rigorous definition of a graph states that it is a one-
dimensional complex made up of a set of zero-dimensional
objects (vertices) and a set of one-dimensional objects
(connections) together with a rule which assigns two distinct
vertices to each connection.

For any kind of graph, it is possible to define anadjacency
matrix and adistance matrix. Both of these matrices are
symmetric. An adjacency matrixA has the elementaij ) 1
if verticesi andj are adjacent, i.e., have an edge in common,
and otherwiseaij ) 0. Self-connections and multiple con-
nections are excluded, i.e.,aii ) 0. The adjacency matrix of
a pseudograph,A′, has the elements along the main diagonal,
aii, that count the multiple connections and the self-

connections (they count twice each).1 The graph-pseudograph
adjacency matrix can thus be written in a compact form in
which the graph elements aregi,j and the pseudograph
elements arepsi,i (the 4× 4 matrixM ). Matrix M can also
be read as a prototype for a distance matrix which contains
only graph elements, i.e.,psi,i ) 0, while thegi,j elements
should be read as the corresponding distance between vertices
i and j in a graph. The elementdij in a distance matrixD
equals the number of edges in the shortest path between
verticesi and j. Thus, if in a cycle there are two paths not
necessarily of the same length connecting verticesi and j,
the meaningful distance is the smallest of these distances,
and it is this distance which is entered asdij. As an example,
matrix A is the adjacency matrix of the chemical graph of
1,2-difluoroethylene (Figure 1, top), matrixA′ is the
adjacency matrix for the chemical pseudograph of 1,2-
difluoroethylene (Figure 1, bottom), and matrixD is the
distance matrix of both the chemical and general graph of
1,2 difluoroethylene,

The sum of the elements either along a row or along a
column inA andA′ is the degree of a vertex of a chemical
graph and pseudograph, respectively, normally calledδ and
δν (valence delta) in molecular connectivity theory.13 From
any chemical graph, and especially from the corresponding
adjacency and distance matrices, it is possible to derive a
set oftopological indicesor graph-theoretical indices.1,21-25

The topological indices are numerical quantities which are
based on certain topological features of a chemical graph,
and they attempt to express numerically, in a direct manner,
the topological information content for a given chemical
compound. These indices are referred to asgraph inVariants,
since isomorphic graphs possess identical topological indices.
These indices may be used directly or in combination with
other “ad hoc” indices as numerical descriptors to derive
quantitative structure-property or structure-activity rela-
tionships (QSPR/QSAR).

There is another important category of graphs used in
chemistry, thereaction graphs, which are applied in chemical
kinetics and in computer-assisted organic synthesis.7,26Here,
a graph encodes a reaction mechanism, where each vertex
corresponds to a reactant, product, or intermediate, and the
edges correspond to elementary steps. In order to summarize
the successive intermediates in a multistep reaction mech-
anism, one depicts each intermediate by a vertex and each
elementary reaction step by an edge. Reaction graphs use
undirected edges(edges with no associated direction as-
signed, i.e., the normal edges), to encode reversible reaction
steps, anddirected edges(or arcs, edges with a direction,
i.e., arrows), to encode irreversible reaction steps. This
description will be expanded in a later section.

A less important category of graphs is that of the
physicochemical graphs introduced to encode phase dia-

Figure 2. The K1, K2, K3, K4, K5, andK6 complete graphs.

M ) (ps1,1 g1,2 g1,3 g1,4

g2,1 ps2,2 g2,3 g2,4

g3,1 g3,2 ps3,3 g3,4

g4,1 g4,2 g4,3 ps4,4
) (1)

A ) (0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

) A′ ) (1 0 0 1
1 0 1 1
1 0 1 6) D) (0 1 2 3

1 0 1 2
2 1 0 1
3 2 1 0

)
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grams. In these graphs, colored vertices and edges encode
phases and transitions between phases, respectively.27 The
interest in this type of graph soon faded, and an elaborate
systematization of this subject was not achieved, Had the
study of this type of graph continued and deepened, this field
of chemical graph theory would by now have contributed
new insights into problems concerning phase diagrams.

1.3. QSAR/QSPR Model Studies
The quantitative structure-activity relationship (QSAR)

and quantative structure-property relationship (QSPR) in-
form us that for a structure (â) the property (P) or activity
(A) follows. Thus, considering henceforth activities just as
properties, we have the functional relationshipP ) f(â).
Throughout this review, by the term “structure” we mean
“molecular structure”. The whole of science, and especially
chemistry in its several different aspects (e.g., medicinal,
organic, pharmacological, and physical), is exposed to a
rapidly increasing flood of data. Thus, there is a need both
to avoid drowning in this rising sea and to extract meaningful
information from these data, possibly in a rather rapid and
straightforward way. Mary Jo Nye28 relates that Ernst Mach
had already noted that, because our memory is limited, data
must be reduced. He took the example of the kinetic law,s
) gt2/2. This is a simple rule of derivation by means of which
from a givent we find the correspondings. This rule replaces
in a very complete and accurate manner a huge table of
numbers in which for every falling time the space fallen
through is reported. The rule given allows inferences, i.e.,
makes it possible to derive for anyt the correspondings,
even if the corresponding measurements have not been
performed. The expressionP ) f(â) raises many questions:
How should the structural factorâ be quantified? What
functional relationship should there be betweenP and â?
How many data are needed to derive a meaningful relation?
(Here by “meaningful relation” we mean the relation which
is the simplest to derive and use.) How can the quality of
the predictive relationship be checked easily? How stable is
the derived relation?

The previous sections provide a clear answer to the first
question because by molecular structure we here mean the
corresponding graphs, i.e., the chemical graph, the general
graph, and the complete graph if we are to encode the core
characteristics of an atom. The information contained in these
different types of graphs can be quantified with the aid of
the corresponding adjacency and/or distance matrix, which
allows the derivation of a set of invariants or descriptors.
Todeschini and Consonni16 defined a molecular descriptor
as the final result of a logic-mathematical procedure, which
transforms chemical information, encoded within a symbolic
representation of a molecule, into useful numbers.

These invariants characterize in a unique way the chemical
graph, and they do not depend on the numbering of the
vertices of the graph. Practically, the dictum “if a structure,
then a property” could be replaced by the dictum “for every
chemical graph (cG), if it has a set of graph invariants or
descriptors (I), then it has the propertyP”, as shown in
shorthand notation in eq 2.

In QSPR/QSAR, this rule has essentially a probabilistic
character; that is, it is satisfied in all cases within certain
limits. The generalization that this equation is valid for every
property and activity allows its use for predictive purposes.

The best choice when looking for an unknown functional
relationship is a low profile one, that is, a linear relation-
ship: P ) aI + b, wherea andb are determined by a least-
squares method. In fact, if statistics as a discipline has a
message for the mathematical chemist, this message is that
simple models work better than complex ones. It should not
be forgotten that any function over a small domain can be
approximated by a linear function and that a function such
asP ) aIm + b is linear ina andb but is not linear inm. In
some cases, a multiple relationship,P ) c0I0 + c1I1, c2I2 +
... ) ∑iciIi, whereI0 is the unitary invariant,I0 = 1, works
better. Now, ifP is the (column) vector of the experimental
data andI 1, I 2, etc. are the vectors of the graph-theoretical
invariants, then the previous equation can also be written in
a compact matrix form, i.e., as a dot product:P ) C‚I , where
C is the row correlation vector. The optimal invariants are
normally chosen either by trying the entire combinatorial
space described by the invariants or by the aid of agreedy
algorithm, i.e., a forward selection technique which at each
step just introduces the next best invariant. The nonlinear
variables, e.g.,m andn in relation,P ) c0 + c1I1

m + c2I2
n,

can be easily found by the aid of optimization procedures.

As for the number of data points needed to obtain a
meaningful relationship, a simple rule of thumb applies: “The
more the better”.29 But even a small set of data can be
meaningful. The problem of studying “small” samples may
be critical in some situations, but it may be irrelevant in other
cases. Actually, the sample size depends on the interest of
researchers and the available data. In their fundamental work
on the subject, Hansch and Leo30 reported hundreds of
regressions in which the samples had less than a dozen points.

The quality of the predictive equation in QSPR/QSAR
studies is usually judged by a set of statistical parameters:
r, or as some authors preferr2, which is called the correlation
coefficient of the regression or the coefficient of determi-
nation, along withs, the standard deviation of the estimate,
ci ( si, the regression parameters with their deviations, and
F, the Fischer ratio. But this is not enough, and other methods
should be used to check the model quality. Sometimes, some
data (outliers) worsen the statistical quality of a predictive
equation. In this case, it is good policy to leave them out of
the model even if throwing away data, while making life
easier, is intellectually unsatisfying. Plot methods, i.e.,
experimental vs predicted property plots, are good methods
for checking the quality of the predictive relationship. Plot
methods have recently received new attention because of a
lack of precision that surfaced in many publications over a
wide range of chemical fields.31-33

Normally, it is good policy in model studies to divide the
entire set of data to be modeled into atraining set, i.e., a set
of vectors Pi, I 1, I 2, ...., I n used to derive the fit-model
equation, and an evaluationsetof vectorsPj, I n+1, I n+2, ....,
I n+m, used to evaluate thePj values and thus to evaluate the
reliability and predictive quality of the model equation fit
found. This should also be done to aid in avoiding overfitting.
Linear regressions can produce a good predictive relationship
that predicts some data sets satisfactorily but that fails on
other data because the original data have been overfitted.
When there is a shortage of data and all data are needed to
build the predictive equation, one of the validation methods
most frequently used to check for overfitting of a predictive
equation is the method called variously “leave-one-out”,
“cross-validation”, or “jackknifing”. In this method, one piece
of the training data (or two pieces for the second-order

{cG}({I} f P) (2)
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jackknife, and so on) is removed as if sliced out with a knife,
the training is done on the remaining samples, and then the
predictive equation so determined is used to predict the
sliced-out data. This procedure is repeated until all of the
data points have been left out and then predicted. Thus, for
every data point the predictive equation has been validated.
The prediction coefficient34 q2 is normally used to check the
validity of the leave-one-out method. It is defined byq2 )
(SD - PRESS)/SD, where SD) ∑(yi - 〈y〉)2 is the sum of
the squared deviations of the observed values from their mean
and where PRESS) ∑(yi - yiloo),2 in whichyiloo is a predicted
value of the property under study when the prediction has
been made by the leave-one-out method. Some authors accept
anyq2 value greater 0.50 as a satisfactory result even though
a higher value would be preferred. It is also good policy to
keep the number of descriptors (n) well below the number
of properties to be modeled, as care should be taken to avoid
chance correlations that may occur whenever there are more
variables than the actual number of observations. Preferably
a “wealthy” predictive equation should have the ratio of the
number of observations, i.e., the points to be fitted, to the
number of variables as large as possible. For the addition of
a new descriptor, a decreasing Fischer ratioF with all other
statistics increasing in quality is a clear sign that the new
descriptor is useless.

The multiple linear predictive relationship can be unstable;
that is, its regression parameters may show chaotic behavior
under addition or deletion of a single invariant because of
interrelated invariants. Further, the value of the deviation of
the regression parameter,si, can overshadow the value of
the regression parameter itself, rendering it statistically
meaningless and the predictive relationship unreliable. For
the first problem, the solution is either to work with a single
descriptor or to work with orthogonalized descriptors. For
the second problem, the orthogonalization procedure in some
cases helps in decreasingsi, even if it needs to be redone
every time a new compound is inserted or deleted in the set
of compounds to be modeled. Nevertheless, even ifsi is large,
the predictive character of the original equation is not
endangered.35-38 It should be emphasized here that with
multilinear relations, where small rounding effects may be
magnified into consistent errors in predicted values, the
number of signficant figures in the coefficients returned by
the regression procedure is sometimes critical for an optimal
prediction.1

1.4. Plot Methods
Normally, methods which involve the use of plots are in

general usually referred to as “graphical methods”. Neverthe-
less, to avoid any misunderstanding with “graph methods”,
which are methods that involve the use of graphs, the phrase
“plot methods” will be used in this field of study. Despite
some misconceptions about plot methods, the recent awaken-
ing of interest in statistical methods in QSAR/QSPR
methodology31-33,40-45 has emphasized the critical value of
plots in detecting the statistical quality of a model, as has
already been described in a previous work.1 The conclusions
that can be reached from the cited studies can be summarized
in a few points: (i) the need for constant use of an evaluation
set, (ii) simple fit models are better than complex fit models,
a fact that may help in avoiding overfitting, (iii) the exclusion
of highly correlated descriptors is not always good policy,
(iv) plot methods should always be included in any model
study, and (v) the observed vs calculated, i.e.,y vs ycalc, and

the calculated vs observed plots are not symmetric, because
their slopesa (y vs ycalc) andb (ycalc vs y), respectively, are
related to the correlation coefficient,r, by the fundamental
relation of the least-squares method,ab ) r2. Furthermore,
a ) 1 andb ) r2; that is, theycalc|y plot has sloper2 and
intercept different from zero, while (vi) they|ycalc plot
disposes the points around the bisector of the first and third
quadrants.46-48 This asymmetry is maintained in the corre-
sponding residual,D ) y - ycalc, plots, where (vii) the
residualD|y plot bears a regression line which passes through
the center of mass and has a negative slope of-rs

2 (where
rs

2 ) 1 - b ) 1 - r2) and an intercept equal to the intercept
of theycalc|y plot, while the points in theD|ycalc residual plot
are not correlated and are symmetrically scattered around
the zero baseline. This means that the asymmetry of the two
plots y|ycalc andycalc|y is also reflected in the asymmetry of
the D|ycalc and D|y residual plots. This means that plot
methods (i.e., the use of the four types of plots,y|ycalc, ycalc|y,
D|y, and D|ycalc plots, and of their characteristics) are an
effective aid in detecting anomalies in models and thus in
validating models.

The importance of the plot methods is further exemplified
by the following case, first detected by Anscombe48 and
reworked in ref 33, where the descriptor vectord ) (10, 8,
13, 9, 11, 14, 6, 4, 12, 7, 5) can describe the following three
properties, with the model eqy(A, B, C) ) 0.50d + 3.00,
in exactly the same way, i.e., withr2 ) 0.667,s ) 1.24,F
) 18, N ) 12,

If we regress the experimental vs calculated values, they )
ycalc line is obtained, up to three decimal figures. If we now
look at the corresponding plots, shown in Figure 3, we notice
at once that something suspicious is going on, especially in
the last two descriptions. Clearly, only the first plot represents
a rational model of our property.

2. New Trends in Molecular Connectivity

2.1. Mathematical Tools

2.1.1. Complete Graphs and the Core Electron
Representation

As can be seen from Figure 1, the pseudograph encoding
1,2-difluoroethylene could also encode 1,2-dichloroethylene,
1,2-dibromoethylene, and 1,2-diiodoethylene. It is thus
evident that even when the concept of a pseudograph is used,
which allows a rather faithful encoding of a molecule if all
its atoms are second row atoms, and with which multiple
bonds and nonbonding electrons can easily be encoded, there
is still a problem with the encoding of the core electrons of
atoms. Now, for atoms with principal quantum numbern g
2, the contribution of the core electrons was taken into
account with the aid of completeKp graphs (see Figure
2).19,49-54 The complete graph representation for the core
electrons together with the pseudograph representation of a

y(A) ) (8.04, 6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68)

y(B) ) (9.14, 8.14, 8.74, 8.77, 9.26, 8.10,
6.13, 3.10, 9.13, 7.26, 4.74)

y(C) ) (7.46, 6.77, 12.74, 7.11, 7.81, 8.84,
6.08, 5.39, 8.15, 6.42, 5.73)
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molecule solves one of the main problems of chemical graph
theory, i.e., the differentiation of diatomic molecules that
up until now were represented by the same molecular simple
graph and also the same general graph.

In Figure 4 the chemical pseudograph plus complete graph
of 1,2-dichloroethylene (top) and 1,2-dibromo ethylene
(bottom) are shown. The two carbons are, as always,
represented withK1 complete graphs, while the two Cl and
Br atoms are represented with aK3 and a K5 graph,
respectively. Up to now, odd-complete graphs, i.e., those with
p ) 2k - 1 for k ) 1, 2, 3, ..., have usually shown a good
model quality in QSAR/QSPR studies, while sequential
complete graphs, i.e., those withp ) k for k ) 1, 2, 3, ...,
have rarely shown a good model quality. Instead, even-
complete graphs, i.e., those withp ) 2k for k ) 1, 2, 3, ...,
give rise to a series of conceptual difficulties, as they would
oblige us to redefine all those hydrogen-suppressed (HS)
chemical general graphs made up of second row atoms,

whose vertices are represented withK1 complete graphs. In
fact, once theK0 graph has been discarded for obvious
reasons, aK2 graph with two vertices and an edge should be
introduced for the second row atoms, which would invalidate
all the chemical graphs used so far to encode molecules with
second row atoms. It should be underlined that the dimen-
sions of the halogen vertices in Figure 4 have no metrical
meaning. This is just a zoom of the halogen vertex, and the
dimensions are as meaningless as the dimensions of theK1

vertex. The circle enclosing the complete graph also has no
meaning; it is just a frame for the complete graph. The
depleted hydrogen atoms of a chemical graph could easily
be encoded with the already cited null graph,K0, with no
points and no edges, and with the intriguing property of a
negative regularity,20 but we will come back to this problem
of the depleted hydrogen atoms. The algorithm for the degree
of a vertex of a chemical pseudograph-complete graph,δν,
should now be able to calculate all contributions from a
general plus complete graph. The algorithm presented in eq
3, which is centered on the two key parameters of complete
graphs,p andr, and on a key parameter of a pseudograph,
δν(ps), has been proposed and successfully tested49-54

The parameterδν(ps) is the vertex degree of an atom in a
pseudograph, and it can be obtained from the adjacency
matrix of the chemical pseudograph. The parameterq equals
1 orp; the parameterpr equals the sum of all vertex degrees
in complete graphs, and it equals twice the number of its
connections. The great majority of model studies which used
complete graphs to encode the core electrons showed a clear
preference for the odd-complete graphs (p ) 1, 3, 5, 7, ....)
with some interesting exceptions in which sequential com-
plete graphs (p ) 1, 2, 3, 4, ...) also showed good model
quality. The parameterq, which has fixed values, might be
used as an optimizing parameter, something like Randic´’s
variable index,55 but at an atomic level rather than at a
molecular level. Throughout the properties studied,q ) 1

Figure 3. Plot of three different properties modeled with a unique
descriptor.

Figure 4. The chemical pseudograph plus complete graph of 1,2-
dichoro- (top) and -dibromoethylene (bottom). The core electrons
of the carbon atom are encoded by aK1 graph, while the core
electrons of Cl and Br are encoded byK3 and K5 graphs,
respectively.

δν ) qδν(ps)/(pr + 1) (3)

Some New Trends in Chemical Graph Theory Chemical Reviews, 2008, Vol. 108, No. 3 1133



or p, with the consequence that four representations of basis
indices are possible: (i) forq ) 1, p ) odd, i.e., aKp-(p-
odd) representation; (ii) forq ) 1, p ) sequential, aKp-(p-
seq) representation; (iii) forq ) p, p ) odd, aKp-(pp-odd)
representation; (iv) forq ) p, p ) sequential, aKp-(pp-seq)
representation. For the depleted hydrogen atoms in hydrogen-
suppressed (HS) chemical pseudographs, it could be assumed
thatq ) p ) 0. Now, the full pseudograph-complete graph
adjacency matrix (which can be asymmetric in some cases)
for a chemical graph with four vertices has the general form
shown in eq 4.

In eq 4,ki ) q/(pr + 1)Kpi; that is, this value depends on the
type of complete graph chosen for the given vertex-atom.
For hydrogen-suppressed 1-Cl,2-Br-ethylene, Cl1-C2dC3-Br4,
assumingq ) 1, andp odd, after multiplication, we have
ps1,1 ) 6/7,g1,2 ) 1/7 (for Cl), andps4,4 ) 6/21,g4,3 ) 1/21
(for Br), while for the remaining carbon atoms we haveg2,1

) g2,2 ) g2,3 ) g3,2 ) g3,3 ) g3,4 ) 1, with all other elements
being zero. The final matrix for this compound is no longer
symmetric, as is shown in eq 5.

Clearly, theA matrix for the compounds in Figure 1 is
symmetric. The choiceq ) 1 or p has its rationale in the
fact that forq ) p theδν values are rather similar to theδν

) (2/n)2δν(ps) values introduced within the frame of the
electrotopological state,ES, concept.1,57 The δν values are
rather similar whenq ) 1 to the values obtained with theδν

) δν(ps)/(Z - Zν - 1) algorithm, which was used to derive
the valence molecular connectivity indices for any kind of
atom.13 For second-row atoms, we always haveδν ) δν(ps),
as it should be.

In Table 1 the electronegativity values taken from ref 56
for the atoms of the 1A-7A groups are collected together
with their atomic number for principal quantum numbern
) 2-6. Let us now see how theδν(Kp) andδν(Kpp) with p
odd relate to the electronegativity of the corresponding atoms.

Figure 5, top, shows the electronegativity values of these
atoms as a function of their atomic number, while Figure 5,
middle, shows plots of theδν[Kp(p-seq)] values together with

Table 1. Electronegativity and Atomic Radii (pm) of 30
Elements Belonging to the Main Groups 1A-7A and to the
Periods n ) 2-6a

1A 2A 3A 4A 5A 6A 7A

2 (K1) Li (3) Be (4) B (5) C (6) N (7) O (8) F (9)
1.0; 152 1.5; 112 2.0; 98 2.5; 91 3.0; 92 3.5; 73 4.0; 72

3 (K3) Na (11) Mg (12) Al (13) Si (14) P (15) S (16) Cl (17)
0.9; 186 1.2; 160 1.5; 143 1.8; 132 2.1; 128 2.5; 127 3.0; 99

4 (K5) K (19) Ca (20) Ga (31) Ge (32) As (33) Se (34) Br (35)
0.8; 227 1.0; 197 1.6; 135 1.8; 137 2.0; 139 2.4; 140 2.8; 114

5 (K7) Rb (37) Sr (38) In (49) Sn (50) Sb (51) Te (52) I (53)
0.8; 248 1.0; 215 1.7; 166 1.8; 162 1.9; 159 2.1; 160 2.5; 133

6 (K9) Cs (55) Ba (56) Tl (81) Pb (82) Bi (83) Po (84) At (85)
0.7; 265 0.9; 222 1.8; 171 1.9; 175 1.9; 170 2.0; 164 2.2; 142

a For each atom, in parentheses is the atomic number,Z. In
parentheses, in the first column (boldfaced), is the dorresponding type
of odd complete graph.

A ) (k1 0 0
0 k2 0 0 k3

)(ps1,1 g1,2 g1,3

g2,1 ps2,2 g2,3

g3,1 g3,2 ps3,3
) (4)

A ) (6/7 1/7 0 0
1 1 1 0
0 1 1 1
0 0 1/21 6/21

) (5)

Figure 5. (Top) Electronegativity values of atoms belonging to
groups 1A-7A as a function of the atomic number. (Middle) The
δν[Kp(p-seq)] (0) and δν[Kp(pp-seq)] (O) values vs the atomic
number. (Bottom) Theδν[Kp(p-odd)] (0) andδν[Kp(pp-odd)] (O)
values vs the atomic number.
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the higherδν[Kp(pp-seq)] values vs their atomic number.
Figure 5, bottom, shows instead plots of theδν[Kp(p-odd)]
values and the higherδν[K p(pp-odd)] values vs the corre-
sponding atomic number. Theδν(Kp) values, either sequential
or odd, coincide forn ) 2, sinceδν ) δν(ps), and they differ
consistently from the electronegativity values even though
their trend is quite similar to the trend of the electronegatiivty
values. Forn ) 3, the best agreement with the electro-
negativity is shown by theδν[Kp(pp-odd)] values, while, for
n > 3, the best agreement with electronegativity is shown
by the δν[Kp(pp-seq)] values. A detailed analysis of these
figures shows also that theKp(pp-seq) andKp(p-seq) values
are somewhat closer to each other than the corresponding
Kp(pp-odd) andKp(p-odd) values, which means that the odd
complete case guarantees a better resolution between the
p-odd andpp-odd values.

2.1.2. Hydrogen Perturbation
Now, algorithm 3 as well as the previous algorithms of

molecular connectivity does not encode the bonded hydrogen
atoms and does not allow differentiation betweenp- and
δν(ps)-similar atoms, which differ only in the bonded number
of hydrogen atoms. Consider the first atom of the compounds
{LiF, BeHF, BH2F, CH3F}: These all have the sameδν,
and the same holds for{BeF2, BHF2, CH2F2}, {BF3, CHF3},
and correspondingly for higher row atoms, i.e., for vertices
with p > 1. The depleted hydrogens are responsible for this
degeneracy inδν. In fact, the HS-graphs and general graphs
within these sets of compounds are equivalent. To circumvent
this degeneracy, the hydrogen contribution will be introduced
into δν as a perturbation parameter, which avoids the
introduction of new graph concepts. This will be tested with
different properties of different classes of compounds which
have different values for the rationH/nht of the number of
hydrogen atoms,nH, to the number of heteroatoms,nht (The
subscript ht stands for “hetero”). It should be remarked that,
normally, for the class of alkanes, the algorithm of eq 3
simplifies into δν ) δν(ps) ) δ, as the chemical general
graphs simplify into the simple chemical graphs. Attempts
to quantify hydrogen atoms have already been made by Kier
and Hall,57 and recently a modified connectivity index was
proposed in which the contribution of the hydrogen atoms
to the overall connectivity index was parametrized asnH/
6.58 The guidelines for the newδν algorithm are53,54,59 (i)
the new δν should not contradict theδν of eq 3 for
compounds with no hydrogens, (ii) the new values forδν

should include a contribution from the bonded hydrogen
atoms which decreases with a decreasing number of bonded
hydrogen atoms, (iii) to preserve the good results of algorithm
3, this contribution should be minimal (i.e., the resultingδν

should not be affected in a significant way by the hydrogen
atoms), (iv) this contribution should decrease in importance
with increasingp (i.e., the dependence onp should equal
the one given in eq 3), and last but not least, (v) the new
algorithm should not introduce any new graph concept
relative to algorithm 3. With all these guidelines in mind,
we will define the fractional parameterfδ based solely on
graph concepts as shown in eq 6.

Here,δν
m(ps) is the maximalδν(ps) value an heteroatom

can have in a chemical HS-pseudograph when all bonded
hydrogens are substituted by heteroatoms. A closer look at

fδ reveals that it is given by the ratiofδ ) nH/δν
m(ps), where

nH equals the number of hydrogen atoms bonded to a
heteroatom. The parameterfδ will obey all the given
guidelines, since it can be considered as a kind of perturba-
tion to theδν of eq 7.

Notice (i) that, for completely substituted carbon atoms (or
heteroatoms),fδ ) 0, sinceδν

m(ps) ) δν(ps) (or nH ) 0),
and eq 3 is retrieved and (ii) that, for saturated hydrocarbons,
δ andδν are no longer equal, even ifδν(ps) ) δ, but instead
sincep ) 1 we haveδν ) (1 + fδ

n)δ. Clearly, for quaternary
carbons wherefδ ) 0, δν ) δ is retrieved. The exponentn
(heren ) 2 , 4, 6, and 8) is not an optimization parameter,
since it has a constant value for each property studied. It
actually detects the importance of the hydrogen atoms
throughout the model of a property or activity of a class of
compounds; that is, the higher then values, the lower the
perturbation and the lower the importance of the hydrogen
atoms. The elementki ) q/(pr + 1)Kpi of the matrix in eq 4
now has to be modified intoki ) (q + fδ

n)/(pr + 1)Kpi. This
algorithm requires knowledge of two pseudograph adjacency
matrices,A, for each compound: the normal adjacencyps-
matrix for δν(ps) and the adjacencyps-matrix for the
corresponding fully substituted compound forδν

m(ps) to be
used to derivefδ

n. For example, the adjacencyps-matrix for
the HS-pseudograph of CH3-NH2 is used to deriveδν(ps),
while the adjacencyps-matrix for the pseudograph of CX3-
NX2 is used to deriveδν

m(ps). Here X is a kind of dummy
monovalent heteroatom, and this dummy compound will not
be used for any further calculation.

δν as given by eq 7 has been plotted vs the atomic number
of the first atom (A) for the following four sets of compounds
(Figure 6, left side), for whichq ) p ) 1, and withfδ

2s
{LiF, BeHF, BH2F, CH3F} (9), {BeF2, BHF2, CH2F2} ([),
{BF3, CHF3} (2), {CF4} (b)sand also for the following
four sets of compounds (Figure 6, right side, whereq ) p
) 2)s{NaCl, MgHCl, AlH2Cl, SiH3Cl} (9), {MgCl2,
AlHCl2, SiH2Cl2} ([), {AlCl3, SiHCl3} (2), {SiF4} (b). Note
that guarantee i holds for compounds LiF, BeF2, BF3, and
CF4 and for the corresponding second-row compounds as it
should, while guidelines ii and iii hold for the other
compounds. Theδν(A) value of A in a set is never larger
than theδν(A) value in the next set of compounds, and within
a set it increases with an increasing number of bonded

fδ ) [δν
m(ps) - δν(ps)]/δν

m(ps) ) 1 - δν(ps)/δν
m(ps) (6)

Figure 6. δν values obtained with eq 7 vs the atomic number for
atomA throughout eight sets of compounds, which differ among
them in the number of hydrogen atoms bonded toA.

δν )
(q + f δ

n)δν(ps)

(pr + 1)
(7)
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hydrogens, while for equalA atoms it increases with an
increasing number of fluorine atoms. The difference between
adjacentδν(A) values within a set of compounds,s, ∆δ )
δν(As

i+1) - δν(As
i), decreases, as is evident in the first and

second set, in keeping with the decreasing importance of
the bonded hydrogen atoms. The difference betweenδν(A)
values,∆δ′ ) δν(Ai

s+1) - δν(Ai
s), throughout the given sets

of compounds is nearly constant, in keeping with the constant
contribution of the entering fluorine atom. Equation 7
guarantees that, with increasingp, δν(A) decreases in any
case (guideline iv), as can be seen on the right side of Figure
6. Thus, all valenceøV values obtained with eq 7 forδν are
able to differentiate among compounds that have atoms with
δν(ps) * δν

m(ps). As we do not have a complete set of
meaningful physicochemical property values to check the
present conjecture, we regress the new1øV(7) values obtained
with eq 7 (with fδ

2) vs the old1øV(3) values obtained with
eq 3 for the first five sets of compounds to determine if they
diverge markedly from each other. The linear regression so
obtained is rather good, as is indicated in eq 8.

Repeating the same calculations for the sets of the third row
compounds, we obtain the results in eq 9.

This means that the old1øV(1) values cannot at all be
considered inconsistent values. Let us see how eq 7 (with
fδ

2) and eq 3 affect four C-C bond types in hydrogen-
suppressed pseudographs of alkanes (q ) p ) 1),

Here δ is the main molecular connectivity parameter that
can be obtained from the simple HS-graph, which, in this
case, coincides with the HS general graph. The relation
shown in eq 10e betweenδν(7), from eq 7, andδν(3), from
eq 3, confirms that theδν(3) values are not that inconsistent.

2.1.3. Molecular Connectivity and Pseudoconnectivity
Basis Indices and their Duals

To avoid a huge combinatorial problem, only a restricted
set of molecular connectivity basis indices,{â}, will be
considered here for model purposes. It should be remembered
that with aδν and aδν(ps) two different types of valence

indices could actually be derived, with one being based on
δν and the other onδν(ps). The actual set of valence con-
nectivity indices will only be based onδν. Our model set
{â} ) {{ø}, {ψ}, {âd}} is composed of three subsets:{ø},
a collection of eight molecular connectivity basis indices,
{ψ}, a collection of eight molecular pseudoconnectivity basis
indices, and{âd}, a collection of twelve dual connectivity
and pseudoconnectivity basis indices.13,60-62 These will all
be classified as molecular connectivity basis indices. It should
be noted that a small molecule with differing heteroatoms,
such as acetic acid, can have more than forty molecular
connectivity basis indices. The cited subsets of basis indices
are given in eqs 11, and their definitions are collected into
pairs according to their formal similarity in eqs 12-15.

Index øt (andøV
t) is the total molecular connectivity index,

and it has itsψ counterpart in the total molecular pseudocon-
nectivity index,TψI (andTψE). The sums in eqs 12 and 13,
as well as the products (∏) in the two eqs 15, are taken
over all vertices of the hydrogen-suppressed chemical graph.
The sums in the two eqs 14 are over all edges of the chemical
graph, i.e.,σ bonds in the molecule. Replacingδ with δν,
the subset of valenceøν indices, {Dν, 0øν,1øν, øν

t}, are
obtained. Replacing, instead,Ii with Si, theψE subset{SψE,
0ψE,1ψE, TψE} is obtained. SuperscriptsS and T stand for
sum and total, while the other sub- and superscripts follow
the established nomenclature forø indices.1,13Basisψ indices
are indirectly related to theδν defined in eq 7 through the
I-state (ψI subset) andS-state (ψE subset) indices,57 as shown
in eq 16.

In eq 16,rij counts the atoms in the minimum path length
separating two atoms,i and j, and is equal to one plus the
graph distance,dij + 1. ∑∆I incorporates the information
about the influence of the remainder of the molecular
environment, and since it can be negative,S can also be
negative. Since some atoms haveS< 0, to avoid imaginary
ψE values, everyS value of our classes of compounds has
been rescaled. In fact, theSvalues for 20 metal halides, MeX
(Table 3), have been rescaled to theSvalue of Ba in BaF2,
whereS[Ba(BaF2)] ) -3.083. TheS values of 54 organic
compounds in Table 4 have, instead, been rescaled to theS
value of Si in SiF4, S[Si(SiF4)] ) -6.611, while theSvalues
of 25 chlorofluorocarbons (Table 5) and 34 halomethanes
(Table 9) have been rescaled to theS value of the carbon

1øV(7) ) 1.121 ((0.091)1øν(3) - 0.091 ((0.033):

F ) 340, r2 ) 0.977, s ) 0.03, N ) 10 (8)

1øV(7) ) 1.070 ((0.034)1øV(3) - 0.078 ((0.028):

F ) 966, r2 ) 0.992, s ) 0.02, N ) 10 (9)

C-C: δν(3) ) δν(ps) ) δ ) 1, δν
m(ps) ) 4,

δν(fδ
2) ) 1.5625 (10a)

-C-C-: δν(3) ) δν(ps) ) δ ) 2, δν
m(ps) ) 4,

δν(fδ
2) ) 2.5 (10b)

>C-C<: δν(3) ) δν(ps) ) δ ) 3, δν
m(ps) ) 4,

δν(fδ
2) ) 3.1875 (10c)

fC-Cr: δν(3) ) δν(ps) ) δ ) 4, δν
m(ps) ) 4,

δν(fδ
2) ) 4 (10d)

δν(7) ) 0.8 ((0.03)δν(3) + 0.813 ((0.091), F ) 585,

r2 ) 0.997, s ) 0.07, N ) 4 (10e)

{ø} ) {D,0ø,1ø,øt,D
V,0øV,1øV,øV

t}, {ψ} )

{SψI,
0ψI,

1ψI,
TψI,

SψE,0ψE,1ψE,TψE}

{âd} )

{0ød,
1ød,

1øs,
0øV

d,
1øV

d,
1øV

s,
0ψId,

1ψId,
1ψIs,

0ψEd,
1ψEd,

1ψEs}
(11)

D ) ∑iδi
SψI ) ∑iI i (12)

0ø ) ∑i(δi)
-0.5 0ψI ) ∑i(Ii)

-0.5 (13)

1ø ) ∑(δiδj)
-0.5 1ψI ) ∑(IiIj)

-0.5 (14)

øt ) (∏δi)
-0.5 TψI ) (∏Ii)

-0.5 (15)

I ) (δν + 1)/δ, S) I + ∑∆I,

with ∆I ) (Ii - Ij)/r
2
ij (16)
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atom in CF4, i.e.,S[C(CF4) ) -5.5. The rescaling procedure,
which is also done to avoid too small or too largeSi values,
has a minor influence on the quality of the modeling.61 The
dual basis indices are defined in the following by eqs 17-
19.62

The correspondingøV valence dual indices andψE dual
indices are obtained by replacingδ by δν and Ii by Si in
these expressions. The exponentµ in eqs 18 is the cyclomatic
number, which indicates the number of cycles in a chemical
graph, and it is equal to the minimum number of edges which
must be removed in order to convert the (poly)cyclic graph
into an acyclic subgraph. Dual indices except for1øs and
1ψIs can be negative.

Alkali halides and all those compounds made up of two
connected atoms have deceptively simple graphs, i.e.,•s•.
In this case, nonvalenceø indices are useless, since they are
the same for all these compounds. Further,1øV = øV

t, 1ψI )
TψI, and1ψE ) TψE, while the zeroth- and first-order dual
indices obey the relations given in eqs 20.

The first two nonvalence indices are useless, while the last
three can be described by their parent nondual index, from
which they differ only by a constant (-0.5). For the first-
order “soft” dual indices of MeX, the relations in eq 21, of
which the first is useless, hold.

2.1.4. Higher-Order Terms
With the basis indices, it is possible to use a trial-and-

error procedure to construct a series of higher-order descrip-
tors known as (i) molecular connectivity terms,1,63 denoted
by X ) f(ø), (ii) molecular pseudoconnectivity terms, denoted
by Y ) f(ψ), and (iii) higher-order terms, denoted byZ )
f(X,Y,âd) and Z′ ) f(Z,âd). All of these will be called
molecular connectivity terms. TheX andY terms can be as
convoluted as the rational function of eq 19, even though
they are usually simpler.

Here, forâ ) ø, we haveT ) X, and forâ ) ψ, we haveT
) Y. a throughd andm throughr are parameters that depend
on the property being modeled. Actually, it seldom happens
that all of these parameters are different from zero or one.

2.1.5. Variable Molecular Connectivity Index
A quite useful molecular connectivity index which intro-

duces a variable vertex degree in a chemical graph has
recently been introduced and used in QSPR/QSAR studies.64-70

This variable is the connectivity index,1øf, where the left-
superscript 1 has the usual meaning given by eq 14 and where
the right-superscriptf means that the new index is now a
function of a single variablef(x), and is defined by eq 23.

Actually, although many types of variable indices were
proposed, we will be concerned here only with the variable
molecular connectivity index. The definition given is valid
for the homoatomic HS chemical graphs; that is, it encodes
atoms of the same type. This definition makes it possible to
define, following the rules for dual indices, a previously
never used, rather “easy” dual variable index, i.e.,1øf

d )
(-0.5)(N+µ-1)∏(xδi + xδj). For heteroatomic HS chemical
graphs, the formally similar but more general definition given
in eq 24, in whichyH stands for the variable contribution of
the heteroatom, should be used.

The corresponding dual index would be1øf
d ) (-0.5)(N+µ-1)∏-

(xδi + yHδj). Here, each type of heteoatom,yH, will be
described by a different variable; that is, for organic
molecules with carbons only,yH ) x, while if in addition
other atom types are present, thenyH ) y, w, z, etc. for each
additional type. Algorithm 24 has also been proposed for
structures containing cycles, whereyH is the contribution of
carbon in a cycle. The adjacency matrix in this case is rather
similar to the adjacency matrix of a chemical pseudograph,
but in this case, the elements along the main diagonal are
unknown and, thus, can be optimized to better adapt them
to the data. This is the interesting advantage of thisVariable
descriptor, which clearly depends on the optimizedx or yH

value (orw or z). To avoid possibly negative radicands, we
should always have (δi + x)(δj + x) > 0. Actually, the case
where both terms under the radicand are negative and thus
give a positive radicand has until now not been treated. Ifx
> 0, then1øf e 1ø, while, for x e 0, we have instead1øf g
1ø. For the (δi + x)(δj + yH) radicand, rather similar reasoning
is valid. Figure 7 shows the changes of1øf with x g 0 and
x < 0 for the hydrogen-suppressed chemical graph of ethane
(CH3-CH3, 2) and neopentane [(CH3)4, 9]. The top figure
shows how, forx ) -1 (CH3-CH3, 2) andx ) -1 and-4
[C(CH3)4, 9], 1øf f ∞, and how, for smallx values, the1øf

values for the two cases do not superpose. The bottom figure
shows that superposition, for largex values, is apparent, as
can be resolved at the second and third decimal digits, which
are important in multilinear models. Similar reasoning is
valid for (δi + x)(δj + yH).

We would like to mention here some other graph-
theoretical molecular indices which have been developed
recently, to wit: the modified molecular connectivity indices
mMCI, the eccentric connectivity indexXu, and a new atom-
type-based index, theAI index.71-74 Concerning these last
indices, plot methods show that some of the data are clustered
and some residuals are heteroscedastic; that is, they grow
with growing values of the property, while for some other
data a clear nonrandom sigmoidal pattern can be detected.
The model equation in this case should probably be aug-

0ød ) (-0.5)N∏i(δi)
0ψId ) (-0.5)N∏(Ii) (17)

1ød ) (-0.5)(N+µ-1)∏(δi + δj)

ψId ) (-0.5)(N+µ-1)∏(Ii + Ij) (18)

1øs ) ∏(δi + δj)
-0.5 1ψIs ) ∏(Ii + Ij)

-0.5 (19)

0ød ) (-0.5)2(δ1·δ2) ) 0.25(øt)
-2;

1ød ) (-0.5)(δ1 + δ2) ) -0.5D

0øV
d ) 0.25(øV

t)
-2; 0ψId ) 0.25(TψI)

-2;
0ψEd ) 0.25(TψE)-2

1øV
d ) -0.5DV; 1ψId ) -0.5SψI;

1ψEd ) -0.5SψE (20)

1øs ) (δ1 + δ2)
-1/2 ) D-1/2; 1øV

s ) (DV)-1/2;
1ψIs ) (SψI)

-1/2, 1ψEs ) (SψE)-1/2 (21)

T ) [a(â1)
m + b(â2)

n]q/[c(â3)
o + d(â1)

p]r (22)

1øf ) ∑[(δi + x)(δj + x)]-0.5 (23)

1øf ) ∑[(δi + x)(δj + yH)]-0.5 (24)
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mented with higher-order components. These are character-
istics that cannot be detected by leave-one-out methods31-33

2.2. Modeling with the Complete Graph and the
Hydrogen-Perturbed Algorithms
2.2.1. Binding, ∆HL°, and Lattice, ∆HG°, Enthalpies and
the Polarizability of Metal Halides

Metal halides offer a good opportunity to check the model
qualities of the algorithm based on complete graphs for the
core electrons, i.e., of eq 7, which, with no hydrogen atoms,
simplifies into eq 3, sincefδ ) 0.76 The subsets of MC basis
indices for metal halides are (see the method section) as
follows: {DV, 0øV, 1øV}, {SψI, 0ψI, 1ψI, SψE, 0ψE, 1ψE}, and
{0øV

d, 0ψId, 0ψEd, 1øV
s, 1ψIs, 1ψEs}. The most affected set is

the set of connectivity indicesø, which, due to the high
degeneracy of theø values, loses all nonvalence indices. The
other subsets of basis indices are nearly unaffected by internal
degeneracy, even if some indices do disappear because of
redundancy with other indices. The experimental lattice and
binding enthalpy values shown in Table 2 are taken from
ref 75. This model76 shows that it is possible to adhere to
the guideline that the similar properties of a common set of
compounds should be described with a common descriptor.

2.2.1.1. Binding Enthalpy (BE).Two descriptions give
good quality for the binding enthalpy: theKp-(p-odd)
description gives the best higher-orderZ and Z′ terms, while
theKp-(pp-odd) gives the best single-basis-index descriptor

as well as the best two-basis-index descriptor. TheseKp-
(pp-odd) single-basis-index/two-basis-index pairs are also the
best Kp-(pp-odd) descriptors for the lattice enthalpy. The
binding enthalpy can be used as a training set for the binding
and lattice enthalpy. In fact, the main descriptor for the bind-
ing enthalpy is also a good descriptor for the lattice enthalpy.

whereu is the utility vector ofC, with ui = ci/s1, and where

The calculated binding enthalpies, i.e., thepo∆HG°(C) of
Table 2, have been obtained with thepoZ′(B) term. Actually,
the poZ(B) term with fewer adjustable parameters is more
than enough to derive meaningfulpo∆HG°(C) values. The
maximum deviation from the experimental value is shown
by KF, which deviates by 4.4%.

2.2.1.2. Lattice Enthalpy. The Kp-(p-odd) description
shows the best two-index combination, while theKp-(pp-

Figure 7. Variable connectivity index,1øf, vs x for the chemical
graphs of ethane (triangles) and trimethylmethane (squares). (Bot-
tom) Portion of the same figure for 100e x e 1000.

Table 2. Experimental, ∆HL°, ∆HG°, and Calculated,
ppo∆HL°(C), and po∆HG°(C), Lattice and Binding Enthalpies,
Respectively, at 298 Ka

MeX ∆HL° ppo∆HL°(C) ∆HG° po∆HG°(C)

LiF 1046 1047 769 766
NaF 928 988 687 673
KF 826 829 588 614
RbF 792 785 563 572
CsF 756 756 566 545
LiCl 861 891 641 654
NaCl 787 788 559 565
KCl 717 733 503 516
RbCl 692 702 476 483
CsCl 668 682 475 463
LiBr 817 806 614 603
NaBr 751 724 539 521
KBr 689 681 474 480
RbBr 665 658 453 454
CsBr 649 643 440 437
LiI 761 762 570 571
NaI 703 690 505 493
KI 648 653 449 455
RbI 629 634 421 432
CsI 610 622 418 417

a All energies are in kJ mol-1.

q ) 1, Kp-(p-odd) description

Z′po(B) ) [poZ(B) + 0.02(0øV
d)]

0.5:
F ) 1058, r ) 0.991, s ) 12, N ) 20, u ) (33, 10)

C ) (1342.54,-252.262)

Xpo(B) ) (DV)0.5/[DV + 12(0øV)1.2]0.3:
F ) 797, r ) 0.989, s ) 14, N ) 20

Ypo(B) ) (0ψE)3:
F ) 104, r ) 0.924, s ) 37, N ) 20

Zpo(B) ) [Xpo(B) + 0.2Y po(B)]1.3:
F ) 962, r ) 0.991, s ) 13, N ) 20, u ) (31, 9.8)

C ) (1168.20, 131.102)

q ) p, Kp-(pp-odd) description

{0ψI}: F ) 174, r ) 0.952, s ) 29, N ) 20

ppo{0ψI,
1ψI}: F ) 230, r ) 0.982, s ) 19, N ) 20
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odd) description has the bestX term while the goodY and
higher-order terms do not show an improvement over theX
term. The lattice enthalpy cannot be used as a training set
for both types of enthalpies, since the resulting descriptor is
unsatisfactory as an evaluation descriptor.

q ) p, Kp-(pp-odd) description.The best single-basis-index/
two-basis-index pairs are the same basis descriptors used for
the binding enthalpy, i.e.,{0ψI}, with r ) 0.951, and
{0ψI,1ψI} with r ) 0.978. Nevertheless, the best descriptor
for the lattice enthalpy is

The∆HL° values calculated with the aid of theppoX(L) term,
i.e., ppo∆HL°(C), are shown in Table 2. The only evident
anomaly is the calculated value for LiCl, which differs by
5% from the experimental value. The origin of this anomaly
is far from evident, since both the Li and Cl atoms give rise
to more than decent residuals in other compounds.

2.2.1.3. Binding and Lattice Enthalpy: A Unique
Description. The Z′po(B) term of the binding enthalpy is a
good descriptor for the lattice enthalpy as well, as we can
see from these statistics,

This interesting result lets us achieve the goal of modeling
similar properties of a class of compounds (here the two
enthalpy sets) with a common optimal descriptor. The
experimental vs calculated plot for the lattice and binding
enthalpies as well as the corresponding residual plot (bottom)
is shown in Figure 8 for a total of 40 points. Here, the
calculated values have been obtained with thisZ′po(B) term.
The maximum percent deviation is that for LiI, for which
the enthalpy deviates by 3.9% from its experimental value.

2.2.1.4. Polarizability of Metal Halides. The polariz-
abilities of the metal halides whose lattice and binding
enthalpies have just been described are collected in Table 3.
Three sets of different polarizabilities obtained from ref 75
are collected in Table 3 and analyzed here. The first set
contains the ionic polarizabilities calculated by adding the
free ion values,Ri, to give the values shown in the second
column. The second set contains the polarizabilities for the
crystal, Rc, calculated from the refractive index according
to (n2 - 1)/(n2 + 2) ) 4πΣR/3V, whereV is the volume per
ion pair, to give the values shown in the fourth column.
Finally, the third set contains the polarizabilitiesRd for
diatomics calculated from the equationΣR ) R0

2(R0 -
0.2082µexp), whereR0 is the experimental internuclear MeX
distance andµexp is its experimental dipole moment, to give
the values shown in the sixth column.

The first set, the ionic polarizability, will be used as a
training set, while the other two sets will be modeled with
the best descriptor for the ionic polarizability, in accord with
the principle of modeling the same type of property of a

common set of compounds with the same descriptor.76 The
ionic polarizability is the most difficult property to model.
The overall model of these three properties with the given
set of basis indices lets us detect the surprising fact that only
within a Kp-(pp-seq) representation for the core electrons is
it possible to find good descriptors for this property. Further,
no good terms of any type could be found. The pseudocon-
nectivity index,1ψI, plays the major role in this model.

2.2.1.4.1. Ion Polarizability,Ri,

q ) 1, Kp-(p-odd) description

po{0øV, 1ψE}: F ) 220, r ) 0.981, s ) 22.2, N ) 20

Xppo(L) ) (DV)0.4/[0.8DV + 30(0øV)1.2]0.8:
F ) 1209, r ) 0.993, s ) 13.5, N ) 20,

u ) (35, 70)

C ) (5335.84, 514.953)

∆HL° with Z′po(B): F ) 1010, r ) 0.991, s ) 15,
N ) 20, u ) (32, 5.9), C ) (1568.41,-170.545)

Figure 8. Experimental vs calculated (Calc) plot of the lattice and
binding enthalpies (N ) 40) for 20 metal halides together with the
corresponding residual plot (bottom).

Table 3. Polarizabilities (in Å3) of the Free Ion, ri, of the
Crystal, rc, and of the Diatomic, rd, and the Corresponding
Calculated (C) Values, withKp-Based Descriptors, for 20 Alkali
Halides

MeX Ri Ri(C) Rc Rc(C) Rd Rd(C)

LiF 2.84 2.57 0.92 1.02 0.63 0.70
NaF 2.96 3.25 1.16 1.74 0.87 1.42
KF 3.60 3.89 2.01 2.40 1.85 2.08
RbF 4.16 4.27 2.58 2.80 2.57 2.48
CsF 5.16 4.52 3.61 3.05 3.91 2.73
LiCl 4.40 3.92 2.97 2.43 2.23 2.11
NaCl 4.52 4.74 3.29 3.28 2.75 2.96
KCl 5.16 5.49 4.17 4.07 3.82 3.75
RbCl 5.71 5.95 4.80 4.54 4.70 4.22
CsCl 6.71 6.24 5.89 4.85 6.33 4.53
LiBr 5.59 5.55 4.16 4.13 3.14 3.81
NaBr 5.71 6.52 4.42 5.14 3.81 4.82
KBr 6.35 7.41 5.35 6.07 4.88 5.75
RbBr 6.91 7.96 6.01 6.64 5.93 6.32
CsBr 7.90 8.31 7.00 7.00 7.74 6.68
LiI 8.31 6.83 6.22 5.47 4.85 5.15
NaI 8.43 7.93 6.54 6.60 5.84 6.29
KI 9.07 8.93 7.47 7.65 6.94 7.33
RbI 9.63 9.55 8.15 8.29 7.94 7.97
CsI 10.63 9.94 9.15 8.70 8.75 8.38

pps{1ψI}: F ) 214, r ) 0.960, s ) 0.6, N ) 20,
u ) (15, 4), C ) (28.7817,-4.62735)
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This descriptor has been used to calculate theRi(C)
values shown in the third column of Table 3. From now on,
to model the remaining two sets of polarizability values, we
will use this basis index obtained with aKp-(pp-seq)
description.

2.2.1.4.2. Crystal Polarizability,Rc. The{1ψI} index shows
even here the best statistical quality,

The quite interesting looking calculatedRc(C) values are
given in the fifth column of Table 3.

2.2.1.4.3. Diatomic Polarizability,Rd. The1ψI index is not
the best index here, but its statistical quality is not too
different from the statistics of the best basis index here, which
is {0ψI}, with F ) 275, r ) 0.969, ands ) 0.6,

The calculatedRd(C) values are collected in the seventh
column of Table 3. The quite positive plot of the three
different sets of polarizability values versus their correspond-
ing calculated values is shown in Figure 9 together with their
residual plot (bottom).

2.2.2. Polarizability of Organic Compounds
For this property, for which values from ref 77 are shown

in Table 4, the hydrogen contribution must be included,
which means thatfδ * 0 for the valence delta should be
tested. For these compounds, the ratio between the number
of hydrogen atoms and the number of other atoms (heteroa-
toms, ht) is nH/nht ) 1.2. The optimal model for the
polarizabilityR with molecular connectivity indices derived
with a δν calculated first withfδ ) 0,51 q ) 1, andp ) odd
) 1, 3, 5, ..., i.e., with aKp(p-odd) representation, which is
here the best representation for the core electrons, is achieved
with the following two types of descriptors,

A slightly improved model is obtained forfδ * 0 (ref 59)
andn ) 8 with theX′ term. TheKp(p-odd) representation

Figure 9. (Top) Experimental vs calculated (Calc) plot of three
different types of polarizability (N ) 60) for 20 metal halides.
(Bottom) The corresponding residual plot.

Table 4. Experimental, r, and Computed,r(C) (with the Present Method) andr(M) (with the MM3 Method), Molecular Polarizability
of Organic Compounds in Units of Å3 a

compd R R(C) R(M) compd R R(C) R(MM3)

*ethane 4.48 4.36 4.49 *acetaldehyde 4.59 4.75 3.91
propane 6.38 6.18 6.52 *acetone 6.39 6.88 6.09
neopentane 10.20 10.22 10.7 F-methane 2.62 3.17 2.82
*cyclopropane 5.50 5.21 6.1 *triF-methane 2.81 5.01 3.02
cyclopentane 9.15 9.00 10.28 tetraF-methane 2.92 3.32 2.96
cyclohexane 11.00 10.90 12.21 Cl-methane 4.55 4.46 4.41
*ethylene 4.12 3.33 3.5 *DiCl-methane 6.82 6.37 6.11
propene 6.26 5.39 5.54 triCl-methane 8.53 8.46 7.78
*2Me-propene 8.29 7.49 7.6 tetraCl-methane 10.51 10.61 9.37
* trans-2-butene 8.49 7.54 7.59 *Br-methane 5.61 5.99 6.16
cyclohexene 10.70 10.37 11.26 *DiBr-methane 8.68 9.43 9.85
butadiene 7.87 6.52 7.32 triBr-methane 11.84 13.05 13.63
*benzene 9.92 9.36 10.91 *I-methane 7.59 7.55 8.06
toluene 12.30 11.39 12.99 di-I-methane 12.90 12.56 13.52
hexamethylbenzene 22.63 22.35 23.61 tri-I-methane 18.04 17.73 19.16
*acetylene 3.50 2.80 2.39 *CH2dCCl2 7.83 7.69 6.92
propyne 4.68 4.95 4.33 cis-CHCldCHCl 7.78 7.73 6.93
C(CCH)4 12.19 12.61 10.15 disilane 11.10 10.92 10.61
*allene 5.00 4.70 4.63 *formamide 4.08 3.94 3.32
methanol 3.32 3.31 3.35 *acetamide 5.67 6.12 5.52
ethanol 5.11 5.11 5.37 acetonitrile 4.48 4.67 3.56
*2-propanol 6.97 7.12 7.43 *propionitrile 6.24 6.60 5.64
cyclohexanol 11.56 11.87 13.1 pivalonitrile 9.59 10.69 9.76
dimethyl ether 5.24 5.55 5.48 benzylcyanide 11.97 12.41 11.82
*p-dioxane 8.60 9.72 10.35 *triCl-acetonitrile 10.42 10.98 8.98
methylamine 3.59 3.58 4.02 *pyridine 9.92 9.15 9.39
formaldehyde 2.45 2.72 1.74 thiophene 9.00 8.70 10.24

a Asterisks indicate left-out compounds (evaluation set).

pps{1ψI}: F ) 373, r ) 0.977, s ) 0.5, N ) 20,
u ) (19, 6), C ) (29.9731,-6.46902)

pps{1ψI}: F ) 182,r ) 0.954,s ) 0.7,N ) 20,
u ) (13, 6),C ) (29.9980,-6.79786)

po{1ø, Dv, 0øv}, F ) 1021, r ) 0.992, s ) 0.50,
N ) 54

X′po(R) ) (30øv + 1.21ø + 0.010øv
d), F ) 2013,

r ) 0987, s ) 0.6, N ) 54
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for the core electrons remains as the best representation for
all of the chosenn values,

With the correlation vector,C, of f8X′po(R), the calculated
valuesR(C) shown in the corresponding column in Table 4
have been obtained. In Table 4, theR(MM3) values obtained
with the MM3 methods77 are also included. Now, leaving
out the 23 compounds marked with an asterisk in Table 4,
i.e., every third compound, makes it possible to avoid
changing the value ofnH/nht ) 1.2. The new optimal model
with the new set of training points forfδ ) 0 andfδ * 0 is,
respectively,

Here, lowering the number of compounds increases a bit the
divergence betweenfδ ) 0 andfδ * 0 in favor of thefδ *
0 case. The number of data pointsN appears to be important
for the importance of the proton perturbation. The calculated
values of the training (N ) 31) plus evaluation (N ) 23)
sets obtained withf8X′po(R, for N ) 31) and with its
regression vector,C, are very similar. Actually, the two
descriptors are very similar, as are also their statistics for
N ) 54. Figure 10 enables comparison of thef8X′po(R,
N ) 31) values (top) with the MM3 calculated values
(bottom). The comparison underlines the good quality of the
model.

2.2.3. Partition Coefficients of Halogenated Organic
Compounds

The partition coefficients (logP) of 25 halocompounds
in six different media are collected in Table 5 (These data
are taken from ref 78; but see also ref 54). This property
has recently been studied by other authors with different
approaches.79-81 The halogenated compounds studied have
nH/nht ) 0.5. Here again, as was done with the metal halides,
we will try to model similar properties of a common set of
compounds with similar descriptors. Here, theKp-(p-seq) and
Kp-(pp-seq) descriptions do not show any optimal model
quality at all, while theKp-(p-odd) andKp-(pp-odd) descrip-
tions show, as already seen with the enthalpy of metal
halides, the best model qualities. Three subgraph indices will
be used throughout the logP model: DF ) ∑iδF, DCl ) ∑iδCl,

andDBr ) ∑iδBr, for the F, Cl, and Br atoms, respectively.
Since the liver partition coefficient is the set of values which
is described best among all of the sets of logP values, the
descriptor for logP(liver) will be used to model all of the
other five sets of logP values.

All the log P values in different media will now be
modeled with the best linear combination of basis indices
(LCBI) derived from the liver case, which is also the best
descriptor for the saline and blood cases. The model requires
aKp-(p-odd) representation (withq ) 1) of the core electrons.
With no hydrogen perturbation, i.e., withfδ ) 0,54 the best
LCBI model for logP(liver), in which the best single basis
index 1øV does not contribute, is

If we consider as strongly correlated only those indices with
r > 0.98,82 then the four basis indices of{0ø, 0ψI, DF, DCl}
are all poorly correlated, sincer(0ø, 0ψI) ) 0.94, r(0ø, DF)
) 0.37,r(0ø, DCl) ) 0.61,r(0ψI, DF) ) 0.08,r(0ψI, DCl) )
0.74, andr(DF, DCl) ) 0.37. TheF - r - s - q2 values for

Figure 10. Plot of the experimental vs calculated values for 31
(training set) and 23 (evaluations set) polarizability values of organic
compounds, and the corresponding plot of the MM3 calculated
values (bottom).

po{0ø, 0ψI, DF, DCl}: F ) 52, r ) 0.955, s ) 0.2,
N ) 25, u ) (7.9, 9.5, 4.8, 3.2, 5.1)

C ) (-2.4135, 2.74399, 0.70903, 0.22563, 1.10583)

f8,po{1ø, Dv, 0øv}, F ) 1018, r ) 0.992, s ) 0.51,
N ) 54

f8X′po(R) ) (30øv + 1.21ø + 0.010øv
d), F ) 2061,

r ) 0.988, s ) 0.61, N ) 54, u ) (46, 2.3)

C ) (0.69688,-0.46547)

po{1ø, Dν, 0øν}:
F ) 768, r ) 0.994, s ) 0.5, N ) 31

X′po(R) ) (30øν + 1.41ø + 0.010øν
d)

0.9:
F ) 2157, r ) 0.993, s ) 0.5, N ) 31

f8,po{1ø, Dν, 0øν}:
F ) 796, r ) 0.994, s ) 0.5, N ) 31

f8X′po(R) ) (30øν + 1.31ø + 0.010øν
d):

F ) 2329, r ) 0.994, s ) 0.5, N ) 31,
u ) (48, 2.6)

C ) [0.69365,-0.55008]
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both zero and nonzerofδ
2 are given in Table 6. Normally

the introduction offδ
2 improves the model,59 especially for

the blood, oil, liver, and fat cases. The model quality begins
to decrease forn g 4, except for the saline case, which has
F ) 25 atn ) 4.

Let us now leave-10-out (with+ and * in Table 5 but
keepingnH/nht ) 0.56) and work with a training set of 15
compounds. For this training choice, the best descriptor for
the saline, blood, and liver case is again the best overall
descriptor, which for both the zero-H-perturbation (fδ

n ) 0)
and the nonzero-H-perturbation (fδ

2 * 0) is againpo{0ø, 0ψI,
DF, DCl}, with the statistics shown in Table 7. Excluding
the fat case, where thefδ

2 ) 0 and fδ
2 * 0 descriptions

diverge with thefδ2 * 0 case being favored asN gets smaller,
the other logP cases show practically no consistent changes
with N, an interesting, albeit expected, result withnH/nht )
constant, but not one which always occurs. Figure 11 shows
the model from 80 training points plus 20 external validated
points (i.e., the five left-out points marked with an asterisk
in Table 5 for each of four sets of logP) obtained with the
correlation coefficients for the four indicesf2,po{0ø, 0ψI, DF,
DCl}, which are here collected into a vector form. In these
vectors, the corresponding utility is given in parentheses after
each component index.

The Kp-(pp-odd) description withq ) p of this property
with a combination of basis indices is rather unsatisfactory.
This desription shows, instead, an optimalX term for the
liver case and for other three cases withfδ ) 0, fδ

6 * 0, and
N ) 15. This term is actually also a good descriptor for all
other cases. Its statistics in the different media are shown in
Table 8

SF andSCl have been calculated using eq 16; when several

Table 5. Liquid and Rat Tissue Air Partition Coefficient (log P) in Different Media at 37 °C, for 25 Halocompounds

molecule saline olive oil blood liver liver-10-out (clc) muscle fat

CH3Cl -0.056 0.933 0.393 0.540 0.574 -0.013 1.130
*CH2Cl2 0.775 2.117 1.288 1.152 0.993 0.899 2.079
+CHCl3 0.529 2.604 1.318 1.324 1.168 1.143 2.307
CCl4 -0.456 2.573 0.655 1.152 1.257 0.657 2.555
CH2dCHCl -0.367 1.387 0.225 0.204 0.173 0.342 1.301
CCl2dCH2 -0.456 1.808 0.699 0.645 0.576 0.312 1.836
*CHCldCHCl(cis) 0.512 2.444 1.334 1.185 0.965 0.785 2.356
+CHCldCHCl(tr) 0.149 2.250 0.981 0.952 0.965 0.547 2.170
CCl2dCHCl -0.081 2.743 1.340 1.435 1.382 1.004 2.744
CCl2dCCl2 -0.102 3.329 1.276 1.847 1.814 1.301 3.214
CH3sCH2Cl 0.037 1.590 0.611 0.558 0.480 0.508 1.587
*CHCl2sCH3 0.389 2.270 1.049 1.033 0.911 0.709 2.215
+CH2ClsCH2Cl 1.057 2.563 1.483 1.553 1.477 1.369 2.537
CCl3sCH3 -0.125 2.470 0.760 0.934 1.058 0.498 2.420
CHCl2sCH2Cl 1.124 3.249 1.763 1.863 1.861 1.360 3.158
CHCl2sCHCl2 1.369 3.803 2.152 2.292 2.279 2.004 3.576
*CCl3sCH2Cl 0.548 3.429 1.620 1.945 2.008 1.597 3.332
+CH2F2 0.117 0.678 0.204 0.439 0.530 0.158 0.155
CH2FCl 0.489 1.348 0.706 0.537 0.599 0.391 1.188
CH2BrCl 0.937 2.558 1.618 1.465 1.356 1.045 2.512
CH2Br2 1.158 2.981 1.870 1.833 1.763 1.607 2.899
*CF3sCHClBr -0.301 2.297 0.721 0.882 0.600 0.649 2.260
+CH2dCHBr -0.357 1.748 0.607 0.522 0.249 0.354 1.692
CH2BrsCH2Cl 0.950 2.755 1.722 1.631 1.745 1.405 2.982
CF3sCH2Cl -0.377 1.380 0.104 0.265 0.289 0.090 1.326

a Asterisk and superscript plus indicate left out compounds in two different leave-out methods.

Table 6.F/r/s/q2 Values Due topo{0ø, 0ψI , DF, DCl} for fδ
2 ) 0 and * 0, and N ) 25

fδ
2 saline blood liver oil muscle fat

0 26/0.917/0.25/0.765 38/0.941/0.25/0.828 52/0.955/0.2/0.850 99/0.976/0.2/0.935 41/0.944/0.2/0.838 150/0.984/0.1/0.965
*0 19/0.888/0.3/0.689 53/0.956/0.2/0.873 81/0.970/0.15/0.902 219/0.989/0.1/0.964 48/0.951/0.2/0.862 283/0.991/0.10.968

Table 7.F/r/s Values Due topo{0ø, 0ψI , DF, DCl} for fδ
2 ) 0 and * 0, and N ) 15

fδ
2 saline blood liver oil muscle fat

0 11/0.905/0.3 19/0.941/0.3 27/0.957/0.2 47/0.975/0.2 21/0.944/0.2 88/0.986/0.2
*0 9.1/0.886/0.4 25/0.954/0.2 48/0.975/0.2 96/0.987/0.15 29/0.960/0.2 281/0.996/0.1

C(Bl) ) [-2.81203 (8.2), 3.15516 (9.9),
0.74932 (4.7), 0.10050 (1.2), 1.68496 (5.8)]

C(Liv) ) [-2.66129 (8.7), 2.99186 (11),
0.77664 (5.5), 0.19568 (2.7), 1.47851 (5.7)]

C(Oil) ) [-2.08605 (8.3), 2.85394 (12),
0.37152 (3.2), 0.03685 (0.6), 1.37054 (6.5)]

C(Fat)) [-1.78911 (8.6), 2.66236 (14),
0.14340 (1.5),- 0.07069 (1.4), 1.05050 (6.0)]

Xppo(L) ) [3DCl + 2.6(DBr)
0.8 + 0.6SF -

0.1SCl - 0.3(0ø)1.8]0.7(1ø)3.2/(DV)1.9
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halogen atoms are present, the average of theS values of
each halogen atom has been used. Regardless of the media,
the exclusion ofcis-1,2-dichloroethylene normally improves
the model.54,59 This improvement is in fairly good accord
with a proposed graph-theoretical representation ofcis-trans
isomerism.1,83 The statistics for this term with or without
hydrogen perturbation are rather similar. Let us leave out
the 10 previous compounds, i.e., those with * and+ in Table
5, and redo the model of this training set of 15 compounds.
For the new training set for both thefδ ) 0 and fδ

8

perturbation, the best term is the following term, for which
statistics are shown in Table 8 and also which forfδ

8 is
slightly different in this form than the previous term.

Except in the liver case, in which the hydrogen perturbation
is clearly dependent onN, since it increases forN ) 15, the
statistics are rather unaffected by the perturbation. Thus,
excluding the liver case, theX term is not affected by the
hydrogen perturbation. In the fifth column of Table 5, the
training (N ) 15) and evaluation (N ) 10) calculated log

P(liver) values have been obtained with the correlation vector
of f8Xppo(Liv), C ) (8.80259,-0.2952), with the utility of
the regression parameters beingu ) (32, 6.0). The values
found are quite satisfactory.

2.2.4. Three Properties of Halomethanes, CHnX4-n

The molar refractionRm, boiling point BP, and parachor
Pa for halomethanes are collected in Table 9.50,84 For these
physical properties, theKp-(p-odd) representation for the core
electrons gives the best results. ForRm and BP, we have the
samenH/nht andN values, butN changes for Pa.

2.2.4.1. Molar refraction, Rm. Here, nH/nht ) 0.2. A
previous model of this property50,51 with fδ ) 0 had the
following optimal descriptors,

Here,Xpo ) (0øv + øt)0.6 (F ) 1092), andYpo ) (0.970ψI -
1.150ψE)1.2 (F ) 2959). Withfδ * 0,59 no better combination
of indices could be found, but instead, aZ term with
improved quality was found:

Here,f8Xpo ) [0.70øv + 0.9(øt)0.8]0.5 (F ) 1132), andf8Ypo )
|(0.870ψI - 1.10ψE) |1.2 (F ) 3422), with vertical bars here
denoting the absolute value. Forn ) 6, 4, 2, the statistics of
theZ term decrease slowly but steadily. If we leave out the
15 compounds marked with an asterisk in Table 9 but keep
nH/nht ) 0.2, then forN ) 19, the optimal combination is
an fδ ) 0 combination not bettered by anyfδ * 0
combination, and the advantage of thef8Z term shrinks, as
indicated byf8F/f0F ) 1.05, with the samer ands:

Here,f8Xpo ) [0.70øv + 0.9(øt)0.8]0.7, andf8Ypo ) |(0.830ψI -
0ψE)|. Thus, lowering N lowers the importance of the
hydrogen perturbation.

2.2.4.2. Boiling Points, BP.HerenH/nht ) 0.2. The best
description50,51 with no fδ contribution was

Figure 11. (Top) Model of 80 training and 20 evaluated points of
log P in four different media (blood, liver, oil, and muscle), with
the optimal combinationf2{0ø, 0ψI, DF, DCl}, which has been
obtained from the liver case only. (Bottom) The corresponding
residual plot.

Table 8.F/r/s Statistics of fnXppo(Liv) for fδ ) 0 and fδ
n * 0, and for N ) 25, andN ) 15

fδ
n N saline blood liver oil muscle fat

fδ ) 0 25 18/0.66/0.4 106/0.906/0.2 580/0.981/0.1 181/0.942/0.3 157/0.934/0.2 155/0.953/0.3
fδ

6 * 0 25 17/0.66/0.4 105/0.906/0.25 598/0.981/0.1 194/0.945/0.3 161/0.935/0.2 158/0.934/0.3
fδ ) 0 15 13/0.70/0.5 74/0.922/0.3 780/0.992/0.1 142/0.957/0.3 99/0.940/0.2 174/0.965/0.2
fδ

8 * 0 15 13/0.71/0.5 84/0.930/0.2 1033/0.994/0.1 133/0.954/0.3 102/0.942/0.2 175/0.965/0.2

f8Xppo(L)n)15 ) [3DCl + 2.5(DBr) + 0.6SF - 0.06SCl -

0.3(0ø)1.8]0.8(1ø)3.1/(DV)1.9

F ) 388,r ) 0.978,s ) 0.1,N ) 20,u ) (20, 2.2),C )
(42509, 0.12397)

po{D, 0ψI}: F ) 3836, r ) 0.9980, s ) 0.6, N ) 34

Z′po(Rm) ) (X + 1.3Y + 0.31ψIS): F ) 22805,
r ) 0.9993, s ) 0.3, N ) 34

f8Zpo(Rm) ) (f8Xpo + f8Ypo)
0.9: F ) 52939, r ) 0.9997,

s ) 0.2, N ) 34, u ) (52, 84)

C ) (12.9475,-11.9537)

f8,po{D,1ψI}:
F ) 2586, r ) 0.9985, s ) 0.5, N ) 19

f8Zpo(Rm) ) (X + 2Y): F ) 16723, r ) 0.9995,
s ) 0.3, N ) 19, u ) (129, 30)

C ) (6.24058 (129),-6.22364 (30))

po{0ø, 0ψI,
SψE}:

F ) 4938, r ) 0.999, s ) 3.6, N ) 34
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With an fδ
6 contribution,59 the model improves a bit,

Let us again omit the 15 marked compounds (*) of Table 9,
which avoids changes innH/nht, as was already done forRm.
With a training set of only 19 compounds, thefδ ) 0 andfδ
* 0 optimal descriptors are, respectively,

The fδ * 0 and fδ ) 0 descriptions are in this case much
closer to each other, which is to say decreasingN decreases
the divergence between these descriptors. The different
behaviors of the hydrogen perturbation for these two proper-
ties between compounds having the same %H shows that
fδ

n is property dependent, a fact already detected with the
different behaviors of logP in different media.

2.2.4.3. Parachor, Pa.In this case,nH/nht ) 0.15, and
the bestfδ ) 050 descriptor was

With an fδ
6 contribution,59 the description improves to

2.2.4.4. Composite [Rm + BP + Pa] Property. The
f8{D,1ψI} andf8{D, 0ø,1ψI} descriptors, which share two basis
indices, are the best descriptors for all these three properties
together,50,51,59

The corresponding bestfδ ) 0 composite [Rm, BP, Pa]
description is

The two descriptions are nearly equivalent. If we leave
out the compounds marked with an asterisk in Table 9 so
that the%H does not change, then from the resulting training
set we obtain the following model qualities for the bestfδ

n

* 0 (n ) 8) andfδ ) 0 cases, respectively, for which the
types of descriptors do not change.

Globally, the two descriptions diverge with a negative
divergence for Pa, and usually thefδ

8 * 0 description
improves over thefδ ) 0 description. TheN-dependence of
the hydrogen perturbation is more convoluted than simple
arguments based on%H seem to indicate. SinceD and 0ø
are strongly correlated, as indicated by a correlation ofr )

Table 9. Molar Refraction, Rm/cm3‚mol-1, Boiling Points, BP/K,
and Parachor, σ, of Halomethanes

CHnX4-n
a Rm/cm3‚mol-1 BP/K σ

*CH3F (+) 6.7 195 78
**CH 2F2 6.6 221 87
CHF3 6.5 189 96
*CF4 6.4 144 105
*CH3Cl 11.7 249
CH2Cl2 16.6 313
*CHCl3 21.5 335
*CCl4 26.4 349 221
**CFCl3 21.4 297 192
CF2Cl2 16.4 243 163
CHFCl2 16.4 282
*CHF2Cl 11.5 233
CF3Cl 11.4 192 134
*CH2FCl 11.6 264
CH3Br 14.6 277
CH2Br2 22.4 370
*CHBr3 30.2 422
CBr4 38.0 462 277
CF3Br 14.3 214
CF2Br2 22.2 298
*CFBr3 30.1 381
CCl3Br 29.3 378
*CCl2Br2 32.2 408
CClBr3 35.1 433
CH2FBr 14.5 291
*CH2ClBr 19.5 342
CHFClBr 19.4 309
CHF2Br 14.4 259
*CHFBr2 22.3 338
CHCl2Br 24.4 361
CHClBr2 27.3 394
*CFCl2Br 24.3 326
*CFClBr2 27.2 353
*CF2ClBr 19.3 269

a An asterisk indicates left-out values. For compounds with ** and
(+), see text.

f6,po{0ø, 0ψI,
SψE}: F ) 5426, r ) 0.9991, s ) 3.5,

N ) 34, u ) (22, 43, 8.1, 84)

C ) (-163.432, 189.053, 2.57254, 269.697)

po{0ø, 0ψI,
SψE}:

F ) 1990, r ) 0.9987, s ) 4.3, N ) 19

f6,po{0ø, 0ψI,
SψE}: F ) 2046, r ) 0.9988, s ) 4.2,

N ) 19, u ) (13, 23, 4.6, 54)

C ) (-166.262, 189.922, 2.67257, 273.529)

po{D, 1ψI}: F ) 15653, r ) 0.99990, s ) 1.1,

q2 ) 0.9993, N ) 9

f6{D,1ψI}: F ) 17885, r ) 0.99992, s ) 1.0,

q2 ) 0.9993, N ) 9

Rm: f8{D, 1ψI}:
F ) 3655, r ) 0.998, s ) 0.6, N ) 34

BP: f8{D, 0ø,1ψI}:
F ) 2386, r ) 0.998, s ) 5.25, N ) 34

Pa: f8{D, 1ψI}:
F ) 17014, r ) 0.99991, s ) 1.0, N ) 9

Rm: {D, 0ψI}:
F ) 3836, r ) 0.998, s ) 0.6, N ) 34

BP: {D, 0ø, 0ψI}:
F ) 2547, r ) 0.998, s ) 5.2, N ) 34

Pa: {D, 0ψI}:
F ) 6673, r ) 0.9998, s ) 1.7,N ) 9

fδ
8 * 0: Rm:

F ) 2498, r ) 0.9984, s ) 0.5, N ) 19

BP: F ) 1647, r ) 0.9984, s ) 4.7, N ) 19

Pa: F ) 15481, r ) 0.99995, s ) 0.9, N ) 6

fδ ) 0: Rm:
F ) 2122, r ) 0.9981, s ) 0.6, N ) 19

BP: F ) 1095, r ) 0.9977, s ) 5.8, N ) 19

Pa: F ) 19699, r ) 0.99996, s ) 0.8, N ) 6
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0.998, it might be advantageous to orthogonalize them with
a stepwise orthogonalization procedure.85-87

2.2.5. Boiling Points of Amines and Alcohols
The experimental values are collected in Table 10 and are

taken from ref 61. For amines and alcohols,Kp hasp ) 1.
For fδ ) 0, the two classes of compounds show different
model quality.51 The amines yield a high quality model, and
the alcohols yield a lower quality model. The results forfδ

n

* 059,88 are deceiving if each class is treated separately, but
the results are very interesting if both classes are modeled
together. In that case, the percent of hydrogen atoms, with
nH/nht ) 2.1, is the highest among those for all the properties
examined here. Forfδ ) 0, we obtain the following best
single-, two-index, and term descriptors,

Improved single- and two-index descriptors are obtained for
fδ

2 * 0, and forfδ
8 * 0, an improved term is obtained:

The improvement achieved is substantial, especially for the
f8X(Am + Al) term.

To determine whether the improvement in the results is
due only to the increase inN from the separate class sizes
of 21 and 27 to the combined class size of 48, every second
compound starting with the first one in both classes of amines
and alcohols in Table 10 (1°, 3°, 5°, ...) is excluded from
the model. This gives 10 training amines and 13 training
alcohols, andnH/nht does not change. The best descriptors
for fδ * 0 andfδ ) 0 for theseN ) 23 training points are
then

The importance of the hydrogen perturbation for these three
descriptors determined with a smaller training set is practi-
cally the same, and the optimal term is only slightly different
from the one previously determined with the largerN ) 48
set. Thus, in this mixed class of compounds, changes inN
do not affect the importance and type of the hydrogen
perturbation. The model of the 23 training points plus the

Table 10. Boiling Points,Tb/K, of Primary Amines and Alcohols

amine Tb/K alcohola Tb/K

CH3- 256.65 (CH3)2CH- 355.55

CH3CH2- 290.15 CH3CH2CH2- 370.25

(CH3)2CH- 307.15 CH3CH2C(CH3)2- 375.45

CH3CH2CH2- 322.15 CH3CH(CH3)CH2- 381.25

CH3CH2CH(CH3)- 336.15 CH3(CH2)3- 390.75

CH3CH(CH3)CH2- 341.15 CH3CH2CH2CH(CH3)- 392.05

CH3CH2CH2CH2- 350.95 CH3C(CH3)2CH(CH3)- 393.55

CH3CH2C(CH3)2- 351.15 CH3(CH2)2C(CH3)2- 396.15

(CH3CH2)2CH- 364.15 CH3CH(CH3)CH(CH3CH2)- 400.65

CH3CH2CH2CH(CH3)- 365.15 CH3CH2CH(CH3)CH2- 402.05

CH3CH(CH3)CH2CH2- 368.15 CH3CH(CH3)CH2CH2- 405.15

CH3C(CH3)2CH(CH3)- 375.15 CH3CH(CH3)CH2CH(CH3)-* 406.15

CH3(CH2)4- 377.55 (CH3CH2)2C(CH3)- 409.15

CH3(CH2)3CH(CH3)- 390.65 CH3CH2C(CH3)2CH2- 409.85

CH3(CH2)5- 403.15 CH3(CH2)4- 411.15

CH3CH2CH(CH3)CH2CH(CH3)- 406.65 (CH3CH(CH3))2CH- 413.15

CH3(CH2)4CH(CH3)- 415.15 (CH3CH2)3C- 415.15

CH3(CH2)6- 430.05 CH3CH(CH3)CH(CH3)CH2- 418.15

CH3(CH2)7- 449.15 CH3CH2CH2CH(CH3)CH2- 421.15

CH3(CH2)8- 465.15 CH3CH2CH(CH3)CH2CH(CH3)-* 432.95

CH3(CH2)9- 490.15 (CH3CH2)2(CH3)C- 434.15

(CH3(CH2)3)(CH3CH2)(CH3)C- 436.15

CH3(CH2)6- 449.95

CH3(CH2)5C(CH3)2- 451.15

(CH3CH2CH2)2(CH3CH2)C- 455.15

CH3CH(CH3)CH2(CH2)4- 461.15

CH3(CH2)7- 467.55

a Asterisks indicate two compounds that had (wrongly) the same set of indices in a previous work.

f2{Dv}: F ) 212, r ) 0.954, s ) 13.3; {øt}:
F ) 131, r ) 0.928, s ) 16.5, N ) 23

f2{Dv, 0øv}: F ) 172, r ) 0.972, s ) 10.7;

{1ø,1øv}: F ) 104, r ) 0.955, s ) 13.5, N ) 23

f8X′(Am+ Al) ) [(øt
v)0.2 + 0.031øv]1.4: F ) 693,

r ) 0.985, s ) 7.6, N ) 23, u ) (26, 55)

C ) (-599.922, 777.008)

X′(Am+ Al) ) [(øt)
0.4 + 0.081øv]0.6:

F ) 192, r ) 0.949, s ) 13.9, N ) 23

{1ø}: F ) 284, r ) 0.928, s ) 17.9, N ) 48

{D, øt}: F ) 165, r ) 0.938, s ) 16.7, N )48

X(Am+ Al) ) [(øt)
0.3 + 0.051øv]:

F ) 383, r ) 0.946, s ) 15.7, N ) 48

f2{Dv}: F ) 484, r ) 0.956, s ) 14.1, N ) 48

f2{Dv, 0øv}: F ) 389, r ) 0.972, s ) 11.3, N ) 48

f8X(Am+ Al) ) [(øt
v)0.2 + 0.031øv]: F ) 1150,

r ) 0.981, s ) 9.4, N ) 48, u ) (34, 58)

C ) (-768.436, 951.991)
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25 evaluating points withf8X′(Am + Al) and itsC vector is
hardly different from the model of the entire set of 48 points
considered as a training set (vide supra). The model is
displayed in Figure 12. In fact, this last term forN ) 48 has
F ) 1143,r ) 0.980,s ) 9.4.

2.3. Model of Properties with the Variable
Descriptor

The values taken from ref 69 for the ether toxicity, pC, of
21 ethers are collected in Table 11. Because an oxygen atom
is present, algorithm 16 was used withyH ) yO. The statistics
corresponding to four different (x, yO) values are shown in
the following together with the magnitudes of the contribut-

ing bond terms (cbt) to 1øf for the CH3-CH2 bond, where
the variability is contributed only byx.

The statistical improvement caused by the (x, yO) values is
evident. The computed values with (x, yO) ) (1000,-1) are
shown in Table 11, together with the corresponding residuals.
The cbt values give an idea of the influence ofx on the
connectivity value: asx increases withyO ) -1, the in-
fluence of the carbon-carbon connectivity decreases relative
to that of the carbon-oxygen connectivity, which becomes
the preponderant connectivity describing the whole molecule.

The cycloalkane and alkylcycloalkane boiling points, bp,
taken from ref 68, together with the corresponding computed
values, bpclc and their residuals are collected in Table 12.
To look into the role of the carbon atoms of the cyclic part
and the carbon atoms of the acyclic part of an alkylcycloal-
kane molecule, the variable parameterx (see eq 24) was
associated with the cyclic atoms and the variable parameter
yH ) y was associated with the acyclic atoms. The calculated
boiling point values have been obtained with the pair of
values (x, y) ) (-0.25,-0.45). The model of these boiling
points is based on a quadratic equation in1øf, i.e., bp) c1

1øf

+ c2(1øf)2 + c0, which gives rise to the following two sets
of statistics with (x,y) ) 0,0 and (x,y) ) (-0.25, -0.45) as
indicated.

Figure 12. Model of a training set of 23 boiling points and an
evaluation set of 25 boiling points of alcohols and amines; at the
bottom is the corresponding residual plot.

Table 11. Ether Toxicity, pC, Computed Ether Toxicity, pCclc,
with x ) 1000, andyO ) -1, and the Corresponding Residuals,
res

ether pC pCclc res

dimethyl 1.43 1.37 0.06
methyl ethyl 1.74 1.89 -0.15
diethyl 2.22 2.32 -0.1
methyl isopropyl 2.26 2.32 -0.06
methyl propyl 2.45 2.32 0.13
ethyl propyl 2.60 2.65 -0.05
ethyl isopropyl 2.60 2.65 -0.05
methyl butyl 2.70 2.66 0.04
methyl isobutyl 2.79 2.66 0.13
methylsec-butyl 2.79 2.66 0.13
methyltert-butyl 2.79 2.65 0.14
methyl pentyl 2.88 2.89 -0.01
ethyl butyl 2.82 2.89 -0.07
ethyl isobutyl 2.82 2.89 -0.07
ethylsec-butyl 2.85 2.88 -0.03
ethyl tert-butyl 2.92 2.88 0.04
dipropyl 2.79 3.02 -0.03
propyl isobutyl 2.82 3.02 -0.20
diisopropyl 2.82 2.89 -0.07
ethyl pentyl 3.00 2.88 0.12
ethyl tert-butyl 3.15 2.88 -0.27

Table 12. Boiling Points, bp/°C, of Cycloalkanes and
Alkylcycloalkanes, Calculated Boiling Points, bpclc, and Their
Residuals, res, Calculated withx ) -0.25 andy ) -0.45

compd bp bpclc res compd bp bpclc res

c3 -32.8 -26.8 -6.0 c4 12.6 12.0 0.6
M-c3 0.7 -0.2 0.9 c5 49.3 48.3 1.0
1,1MM-c3 20.6 20.2 0.4 1,2MM-c3 32.6 27.1 5.4
E-c3 35.9 35.7 0.2 M-c4 36.3 37.0-0.7
c6 80.7 82.3-1.6 1,1,2MMM-c3 54.0 47.5 6.5
E-c4 70.8 70.6 0.2 M-c5 71.8 71.7 0.1
c7 118.4 114.0 4.4 1,1MM-c5 87.5 89.6-2.1
1,2MM-c5 95.7 95.6 0.1 E-c5 103.5 103.1 0.4
M-c6 100.9 104.1-3.2 C8 149.0 143.3 5.7
1,1,2MMM-c5 114.0 113.3 0.7 1,1,3MMM-c5 104.9 110.9-6.0
P-c5 131.0 129.8 1.2 iP-c5 126.5 123.1 3.4
1,1MM-c6 119.6 120.7-1.1 1,2MM-c6 126.7 126.2 0.5
1,3MM-c6 122.3 124.8-2.5 1,4MM-c6 121.9 124.8-2.9
E-c6 131.9 133.2-1.3 M-c7 134.0 134.2-0.2
B-c5 156.6 154.8 1.8 1,2MP-c5 149.5 150.5-1.0
1,1,3MMM-c6 136.6 140.5-3.9 1,2,4MMM-c6 144.8 145.8-1.0
1,3,5MMM-c6 139.5 144.4-4.9 1,4ME-c6 150.8 152.3-1.5
P-c6 156.7 157.9-1.2 iP-c6 154.8 151.7 3.1
1,4MiP-c6 171.3 169.7 1.6 B-c6 180.9 180.7-0.2
sB-c6 179.3 177.4 1.9 iB-c6 171.3 174.2-2.9
tB-c6 171.5 165.9 5.6 1,2EE-c5 150.6 152.7-2.1

(0,0): F ) 93, r ) 0.955, s ) 0.13, N ) 21,
cbt ) 0.70711

(10,-1): F ) 140, r ) 969, s ) 0.11, N ) 21,
cbt ) 0.08704

(100,-1): F ) 176, r ) 975, s ) 0.10, N ) 21,
cbt ) 0.00985

(1000,-1): F ) 178, r ) 0.976, s ) 0.10, N ) 21,
cbt ) 0.0009985

(0, 0): F ) 3480, r ) 0.9972, s ) 4.1, N ) 42;
(-0.25,-0.45): F ) 6372, r ) 0.9985, s ) 3.0,

N ) 42
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These and the statistics for the previous property make
obvious the improvement of the model achieved by using
1øf ) f(x).

3. From Graph Invariants to Lead Design

3.1. Mathematical Tools
Throughout this section, somewhat different molecular

connectivity indices will be introduced. In order to outline
the particular QSPR techniques used with this methodology,
descriptors will be defined before explaining the modeling
tools applied with them. Diverse statistical and molecular
techniques will be sketched here.

3.1.1. Descriptors
The following types of indices, which have been mainly

used in this research, are described in increasing order of
complexity.

3.1.1.1. Discrete Invariants.These are natural numbers
calculated from what chemists understand qualitatively as
the chemical structure.N is the number of non-hydrogen
atoms, i.e., the number of molecular graph vertices.89-91 Vk,
wherek is 3 or 4, is the number of vertices of degreek, i.e.,
the number of atoms havingk bonds,σ or π, to non-hydrogen
atoms.91 PRk for k between 0 and 3 is the number of pairs of
ramifications at distancek, i.e., the number of pairs of single
branches at distancek in terms of bonds.91 L is the length,
i.e., the maximum distance between non-hydrogen atoms
measured in bonds, and is thus the diameter of the molecular
graph defined as max(dij).91 W is the Wiener number, i.e.,
the sum of the distances between any two non-hydrogen
atoms measured in bonds.92-95

3.1.1.2. Connectivity Indices.Throughout the present
section, the connectivity indices defined as in eq 25 will be
used.13,21 Some of them are slightly different from the
previously defined indices. The connectivity index of order
k21 may be derived from the adjacency matrix and is normally
written askøt. The orderk is between 0 and 4 and is the
number of connected non-hydrogen atoms which appear in
a given substructure.

In eq 25a,δi is the number of simple (i.e.,σ) bonds of the
atom i to non-hydrogen atoms, Sj represents thejth sub-
structure of orderk and typet, andknt is the total number of
subgraphs of orderk and typet that can be identified in the
molecular structure. The types used are path (p), cluster (c),
and path-cluster (pc). Following the concepts defined in the
Introduction, section A, a subgraph of type p is formed by
a path, a subgraph of type c is formed by a star, while the
pc subgraph can be defined as every tree which is neither a
path nor a star. Alternatively, a pc subgraph is any tree
containing at least a star and a path.

As an example, Table 13 displays all the p, c, and pc
subgraphs found in a simple molecular structure.

The use of the valence delta,δν, instead ofδ enables the
encoding ofπ and lone-pair electrons13 in the form given in
eq 25b.

Here,δν is just the degree of a vertex in a pseudograph (the
δν(ps) of section 2), and in this context, the old definition,
δν ) Zν/(Z - Zν - 1), for theδi

V of higher row atoms holds.13

The values listed in Table 14 and used in this approach were
adopted because of their general performance.

3.1.1.3. Topological Charge Indices (TCI).The topologi-
cal charge indicesGk andJk of orderk ) 1-5 are defined
for a given graph by eq 26,90 in which N is the number of
non-hydrogen atoms andcij ) mij - mji is the charge term
between verticesi and j. δ represents here theKrönecker
delta symbol, i.e., ifR ) b, thend(a,b) ) 1, and if R * b
thend(a,b) ) 0, and finally, dij is the topological distance
between verticesi and j.

The variablesmij are the elements of theN × N matrix M
obtained as the product of two matrices, i.e.,M ) A‚Q. The
elements ofM expanded in terms of the elements ofA and
Q are given in eq 27.

A is theadjacencymatrix in which elementsaih are 0 if either
i ) h or i is not linked toh; 1 if i is linked toh by a single
bond; 1.5 if i is linked toh by an aromatic bond; 2 ifi is
linked to h by a double bond; and 3 ifi is linked toh by a
triple bond.Q is the inverse squared distance or Coulombian

Table 13. Types of Subgraphs Present in the 2-Methylpropanol
Structure

Table 14. Values ofδν for the Different Heteroatoms Present in
the Listed Groups

group δν group δν

NH4
+ 1 H3O+ 3

NH3 2 H2O 4
sNH2 3 sOH 5
sNHs 4 sOs 6
dNH 4 dO 6
sNs 5 O (nitro) 6
dNs 5 O (carboxyl) 6
dN+d (azide) 4 sF 7
dN- (azide) 6 sCl 0.690
sNd (nitro) 6 sBr 0.254
sSs 1.33 sI 0.15
dS 0.99 dPs 0.560
S (sSO2s) 2.67 P(5) 2.22

Gk ) ∑
i)1

N-1

∑
j)i+1

N

|cji|δ(k,dij), and Jk )
Gk

N - 1
(26)

mij ) ∑
h)1

N

aihqhj (27)

køt ) ∑
j)1

knt

(∏i∈Sj

δi)-1/2
(25a)

køt
ν ) ∑

j)1

knt

(∏i∈Sj

δi
ν)-1/2

(25b)
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matrix. Its elements,qhj, are 0 ifh ) j and otherwiseqhj )
1/dhj

2, wheredhj is the topological distance between vertices
h and j.

Thus,Gk represents the overall sum of thecij charge terms
for every pair of verticesi and j separated by a topological
distancek. The valence topological charge indicesGk

V and
Jk

V are defined in a similar way, but usingAV, the electrone-
gativity-modified adjacency matrix, instead ofA. The ele-
ments ofA andAV are identical except for the main diagonal,
where A has zeroes andAV the corresponding Pauling
electronegativity values, EN, weighed forEN(Cl) ) 2 for
each heteroatom.

To illustrate the calculation of the topological charge
indices, let us considern-butane. Its hydrogen-depleted graph
is: •s•s•s•. If we number each vertex of this graph in the
following way, 1-2-3-4, we can write theA, Q, andM
matrices of eq 28, which are used to derive the followingG
values: G1 ) |c12| + |c23| + |c34| ) 1/4 + 0 + 1/4 ) 0.500,
G2 ) |c13| + |c24| ) 1/9 + 1/9 ) 0.2222, andG3 ) |c14| ) 0.

3.1.1.4. Differences and Quotients of Connectivity
Indices. The difference of connectivity indices,kDt, with k
) 0-4 andt ) p, c, pc, is defined in the following way,96

The quotient of connectivity indices,kCt, with k ) 0-4 and
t ) p, c, pc, is defined in the following way,91

3.1.1.5. Electrotopological Indices.We have already seen
the electrotopological state indices of eqs 16, which include
electronic structural information for each atom of the graph
as well as information about the topological environment of
each atom.57 Electrotopological state indices for each type
of atom present in the molecule are obtained by summing
the electrotopological states for the atoms of a given type.
The symbol consists of “S” for “sum” followed by symbols
for the bonds in the group (s) single, d) double, t) triple,
a ) aromatic) and symbols for the elements in the group.
Thus, the hydroxyl group is SsOH, the ether oxygen is SssO,
the keto oxygen is SdO, and the atom groupssCH3, dCH2,
tCH, sCH2s, and>C< are SsCH3, SdCH2, StCH, SssCH2,
and SssssC, respectively.

3.1.1.6. Shape Indices.Theκ shape indices are the basis
of a method of molecular structure quantitation in which
attributes of molecular shape are encoded into three indices
(κ values).97 Theseκ values are derived from counts of one-
bond, two-bond, and three-bond fragments, with each count
being made relative to fragment counts in reference structures

which possess a maximum and minimum value for that
number of atoms. Furthermore, another shape index, namely,
the shape indexE, is defined as91

In this formula,ni is the number of vertices at a topological
distancedi from the “main path”, where the latter is the
shortest path joining the two most separated vertices.L is
the diameter of the molecular graph. It is clear that the lower
the E value, the more elongated the graph. Indeed, if the
graph is considered as an ellipse, thenE would correspond
to the eccentricity. The discrete invariants, connectivity
indices, TCIs, connectivity difference, and quotient descrip-
tors can be calculated by using DESMOL11.98 Electrotopo-
logical state and molecular shape indices can be calculated
by using MOLCONN-Z.

Other indices have been used, such as, for example,
versions of connectivity indices which include stereochem-
istry100 or differences or quotients of connectivity or charge
indices.101

3.1.2. Modeling
Modeling tools are mainly used to find new active

compounds. To do this, two kinds of equations that are able
to predict properties were obtained: the ones predicting
quantitative properties (multilinear regression equations) and
the others enabling recognition of the category to which the
compound belongs (discriminant equations). A model is
composed of several such equations of each type and the
associated thresholds which define the intervals within which
the active compounds generally fall for each equation. Thus,
the model acts as a filter for potentially active new
compounds by selecting only those which satisfy the equa-
tions within defined thresholds. Laboratory assays afford
information on the efficiency of the model, which is useful
in refining it.

3.1.3. Multilinear Regression Analysis (MLRA)
Several multilinear descriptive functions have been ob-

tained by the linear correlation of physical properties with
the aforementioned descriptors. The Furnival-Wilson algo-
rithm102 is used to obtain subsets of descriptors and equations
with the least Mallows parameter,Cp,103 as defined in eq
32.

In eq 32, RSS is the residual sum of squares based on the
selected independent variables,s2 is the residual mean square
based on the regression using all independent variables,p is
one plus the number of subset independent variables, andN
is the number of cases. This algorithm combines two methods
of computing the residual sums of squares for all possible
regressions to form a simple leap and bound technique for
finding the best subsets without examining all possible ones.
The result is a reduction by several orders of magnitude in
the number of operations required to find the best subsets.

3.1.4. Validation of the Selected Equations
3.1.4.1. Stability.The stability of the selected mathemati-

cal models can be evaluated through a cross-validation by

A ) (1 0 0 0
1 0 1 0
1 0 1 0) Q ) (0 1 1/4

1/9
1 0 1 1/4
1/4 1 0 1
1/9

1/4 1 0
)

M ) A‚Q ) (1 0 1 1/4
1/4 2 1/4

10/9
10/9

1/4 2 1/4
1/4 1 0 1

) (28)

kDt ) køt - køt
ν (29)

kCt )
køt

køt
ν

(30)

E )

∑
i

ni(di + 1)

L
(31)

Cp ) RSS

s2
+ 2p - N (32)
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the leave-one-out method,104 in which one compound of the
set is extracted, the model is recalculated using as a training
set the remainingN - 1 compounds, and the property is
then predicted for the removed element. This process is
repeated for all compounds of the set to obtain a prediction
for each one. SEE(CV), the standard error of estimates for
the cross-validation, is determined from the residuals for
these predictions. The results can be plotted as residuals
obtained from the best regression versus residuals obtained
by cross-validation (see Figure 13).105 This procedure also
aids in the detection of outlying points. A more robust
stability validation method is the leave-n-out method.106

The predictive ability of the equations obtained can be
better assessed by an external test. A random subset of
molecules is initially chosen (the “external test set”), and
the modeling study is carried out with the remaining
molecules (the “training set”). The predictive performance
of the model is assessed by the results obtained when it is
applied to the external test set.

3.1.4.2. Randomness.To detect the possible existence of
fortuitous correlations, a randomization test can be done by
randomly permuting the values of the property of each
compound and then forming linear correlations with the
aforementioned descriptors.107 This process is repeated as
many times as there are compounds in the set. The usual
way to represent the results of a randomization test is to plot
correlation coefficients versus predicted ones,r2 and r2

cV,
respectively (Figure 14).r2

cV is the prediction coefficient,
defined asr2

cV ) 1 - PRESS/SD, with PRESS being the
predictive residual sum of squares and SD being the squared
deviation of the observed value from the mean observed
value. It must be noted that, in contrast tor2, the coefficient
of prediction can take values less than zero.38,108

3.1.5. Linear Discriminant Analysis (LDA)

The objective of the linear discriminant analysis, LDA, is
to find a linear combination of variables that allows
discrimination between two or more categories or objects.
Generally, two sets of compounds are considered in the
analysis: first, a set of compounds with proven pharmaco-
logical activity and, second, a set of compounds known to
be inactive. The selection of the descriptors is based on the
Fisher-Snedecor parameter, and the classification criterion
is the shortestMahalanobisdistance (i.e., the distance of
each case from the mean of all cases used in the regression

equation). Variables used in computing the linear classifica-
tion functions are chosen stepwise. At each step, either the
variable that adds the most to the separation of the groups
is entered into the discriminant function or the variable that
adds the least to the separation of the groups is removed
from the discriminant function. The quality of the discrimi-
nant function is evaluated by Wilks’λ, which is a multi-
variate analysis of the variance parameter that tests the
equality of group means for the variable(s) in the discriminant
function. Minimization of Wilks’ parameter allows selecting
the predictors to be entered or deleted in the discriminant
function.16,107,108

The discriminant ability of the selected function is stated
by the following:

(a) The Classification matrix, in which each case is
classified into a group according to the classification function.
The number of cases classified into each group and the
percent of correct classifications are shown.

(b) TheJack-knifed classification matrix, in which each
case is classified into a group according to the classification
functions computed from all the data except the case being
classified.109

(c) CrossValidation with random subsamples and clas-
sifying new cases.Here, the cases in each group are randomly
subdivided into two separate sets, the first of which is then
used to estimate the classification function, and the second
of which is classified according to the function. By observing
the proportion of correct classifications produced for the
second set, one obtains an empirical measure for the success
of the discrimination.

(d) Use of an External set test, which entails the use of
an external compound set to check the validity of the selected
discriminant functions.

3.1.6. Pharmacological-Activity Distribution Diagrams
(PDDs)

The pharmacological distribution diagram (PDD) is a
useful tool for the selection of equations for the molecular
design step.110 PDDs are histogram-like plots in which the
compounds, preferably from a test set, are grouped into
intervals of the predicted value of the propertyP. The number
of compounds in each interval ofP is determined for each
group. The expectancyE of finding a molecule with a desired
value ofP is obtained. For each arbitrary interval of whatever

Figure 13. Validation of the equation obtained for LD50 of a set
of antihistaminics. Residuals were obtained from the best regression
versus residuals obtained by cross-validation (black points)
outliers). Figure 14. Validation of the mathematical model obtained for the

property LD50. The prediction coefficient,r2
cv, versus correlation

coefficient,r2, was obtained by a randomization study.
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function, the expectancy of the activity is defined asEa )
a/(i + 1), wherea is the ratio of the number of active
compounds in this interval and the total number of active
compounds, andi represents the ratio of inactive compounds
in the same way. The expectancy of inactivity is similarly
defined asEi ) i/(a + 1). For a given equation, it is
straightforward to see the zones in which the overlap ofEa

andEi is smallest and thereby decide if the equation being
studied should be selected or not as useful in molecular
design. This also permits us to determine the intervals of
the property where the probability of finding new active
compounds is greatest relative to the choice of a false active.
Figures 15 and 16 show the PDDs obtained with a con-
nectivity function and a discriminating function, respec-
tively.111

3.2. Molecular Selection and Design
Several schemes of molecular design used in this approach

will be discussed and illustrated with selected examples.

3.2.1. Database Search with External Validation

A mathematical model consisting of one or more equations
with their corresponding thresholds is used to filter a
structural database, and the selected structures are checked
for the activity of interest in the database bibliography.

Compounds found to be active validate the model, while
those which are not listed as having been tested for the
activity of interest are proposed for assay as new potentially
active compounds. A possible scheme is shown in Figure
17.

Example: AnticonVulsant ActiVity, AC.112 The model
obtained from linear discriminant analysis was

This model has been used to predict the anticonvulsant
activity (AC) of compounds not considered in its derivation.
The 10330 compounds included in the Merck index were
screened for this purpose. Using this model, 108 different
compounds were selected as potential anticonvulsant drugs.
A literature search for data on the pharmacological profile
of these 108 compounds was done. It was found that in 41
cases the AC of the structures had been previously reported112

(Table 15). This result shows the accuracy of the model,
which found new potential leads from structures known to
show a different pharmacological profile.

3.2.2. Molecular Selection by Virtual Screening on
Databases

A mathematical model consisting of one or more equations
with their corresponding thresholds is used to filter a
structural database, and the structures selected are testedin
Vitro for the activity of interest. Compounds selected as
actives but not showing activityin Vitro, i.e., false posi-
tives, as well as the activities found for true positives are
used to refine the model. A possible scheme is shown in
Figure 18.

Example: Bronchodilator ActiVity.113a The mathematical
model used to discover new compounds with bronchodilator
activity is comprised of two discriminant functions: the first
one, namely DF1, was constructed using a large set of
bronchodilator drugs consisting of more than 300 compounds
including xanthines,â-adrenergic agonists, anti-cholinergics,

Figure 15. PDD for IC50 in HSV-1: IC50 ) -17.36(4øp) + 41.39-
(4øpc

ν) + 21.71. Abscissas: IC50/µM. Ordinates: Expectancy of
activity in white; expectancy of nonactivity in black. Interval:
between-10 and 20.

Figure 16. PDD for discriminant function of antiviral activity:D
) -1.17(0øν) + 2.11(3øp) + 2.79. Abscissas: Classification function
obtained by linear discriminant analysis. Ordinates: Expectancy
of activity in white; expectancy of nonactivity in black. Interval:
between-1 and 5.

Figure 17. Scheme of molecular design through database search
with external validation.

tam) -28.88- 1.944øpc
V - 0.21G1

V + 4.64G5 +

20.11J3
V - 45.87J4 - 3.420D + 40.65(0C) -

10.47(3Cp) + 2.79(4Dp) + 1.32(PR0)

F ) 10, λ ) 0.54, N ) 128, Selection criterion:
active if tam> 0
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and leukotriene antagonists as well as additional structurally
heterogeneous drugs showing some extent of bronchodillator
activity. A second discriminant function, DF2, was also
introduced solely to improve the DF1 discriminant efficiency.
This DF2 function was obtained from a much smaller set
of about 70 bronchodilator drugs which however did include
as many representative compounds as possible in order to
consider drugs belonging to every family of bronchodilators.

The discriminant functions chosen were as follows:113b

Based on this model, a compound is classified as inactive
as a potential bronchodilator unless either-1 < DF1 < 10
or 0 < DF2 < 17. Most of the active compounds do fall
within these ranges. Application of the DF2 and DF1

functions to a collection of structures related variously to
coumarines, flavonoids, and anthocyanosides drawn from our
working databases resulted in the selection of 20 theoretically
active compounds. Table 16 shows the structure of each
compound and the values of DF1 and DF2 as well as the
classification for each candidate for the different structures
I-IV. From the mean relaxation values,Emax, the concentra-
tion-response curve was made (Emax(%) vs -log C). The
effective concentration 50% (EC50) was calculated by
interpolation, and it was expressed as pD2 (-log EC50). The
result obtained for every compound is illustrated in Table
17.

3.2.3. Virtual Combinatorial Syntheses and Computational
Screening

A mathematical model consisting of one or more equations
with their corresponding thresholds is applied to a virtual
combinatorial library made up of molecular structures
resulting from a given synthetic scheme, and the structures
selected from the virtual library by the model are then
actually synthesized and tested. A possible scheme is
displayed in Figure 19.

Example: Anti-herpes ActiVity.111 The activity of new anti-
herpes simplex virus type 1, anti-HSV-1, designed by virtual
combinatorial chemical synthesis and selected by a compu-
tational screening, is determined. A virtual library of phe-
nolesters and anilides was formed from two databases of
building blocks, one with carbonyl fragments, and another
containing both substituted phenoxy and phenylamino frag-
ments. The virtually assembled compounds library was
computationally screened, and those compounds that our
mathematical model selected as active were finally synthe-
sized and tested. The compounds shown in Figures 20 and
21 typify the compositions of the anhydride and the nucleo-
phile databases, respectively. These compounds were chosen
from among the commercially available ones, with care being
taken to avoid substituents which would lead to side products
in the real synthesis. The final compounds selected, shown
in Figure 22, were synthesized and tested, and the results of
the pharmacological assays are collected in Table 18.

3.2.4. Molecular Design of New Structures
In 1985 and 1988 the Valencia group completed two

doctoral theses dealing with the prediction of drug properties
and drug design using topological indices.114 The results were
published in a follow-up paper.115 The main idea therein was
the use of topological indices in an inverse way as compared
to the usual: i.e. obtaining molecular structures from
topological indices fulfilling predetermined properties.91 This
endeavor was supported by the fact that topological indices

Table 15. Results of Prediction of Anticonvulsant Activity
Obtained When Applying the tam Proposed toThe Merck Index
Base

compd therapeutic categorya probb

aconitine neuralgia 1.000
adinazolan antidepressant 0.931
R-methylenebutyrolactone 0.943
amido-G-acid 0.990
amlodipine antianginal, antihypertensive 0.956
cannabidiol 0.978
cannabinol 0.907
caprolactam 0.982
cycloheptanone 0.976
cycloleucine 0.995
cyclopentanone 0.991
cychlothiazide diuretic, antihypertensive 0.960
diethadione analeptic 0.978
ectylurea sedative, hypnotic 0.933
felodipine antihypertensive, antianginal 0.939
guvacine 0.968
linoleic acid nutrient 0.920
L-pyroglutamic acid 0.977
nifedipine antianginal, antihypertensive 0.961
flunarizine vasodilator 0.815
diltiazem antianginal, antiarrhythmic 0.540
nicardipine antianginal, antihypertensive 0.610
nisoldipine antianginal, antihypertensive 0.974
nitrendipine antihypertensive 0.600
nimodipine vasodilator cerebral 0.584
verapamil antianginal, antihypertensive 0.741
prenylamine vasodilator coronary 0.862
nipecotic acid 0.984
phencyclidine analgesic, anesthetic 0.911
phthalimide 0.917
pipecolic acid 0.961
proline 0.932
riluzole neuroprotective 0.916
biperiden anticholinergic, antiparkinsonian 0.719
scopolamine anticholinergic 0.760
trihexyphenidyl anticholinergic, antiparkinsonian 0.871
benactyzine antidepressant, anticholinergic 0.643
benztropine anticholinergic 0.685
sulfanilamide antibacterial 0.921
caramiphen anticholinergic, antitussive 0.690
carbetapentane antitussive 0.571

a From The Merck Index, 12th ed.b Probability of anticonvulsant
activity by thetam function.

Figure 18. Scheme of molecular design through molecular
selection by virtual screening on databases.

DF1 ) 3.07(1øV) - 3.58G1 + 15.32J2 + 55.50J4 -
1.68PR1 + 0.879PR2 - 11.71

F ) 287, λ ) 0.271, N ) 739

DF2 ) 17.40(3Dp) - 12.27(4Dp) - 6.61:
F ) 129, λ ) 0.315, N ) 192

Some New Trends in Chemical Graph Theory Chemical Reviews, 2008, Vol. 108, No. 3 1151



were not determined as simple structure-related descriptors
but rather as analgebraic description of the structure itself.
The method allowed for molecular construction from scratch

or, alternatively, used a given base structure as scaffolding
for a set of substituents drawn from hydrocarbon substruc-
tures and other functional groups.

Table 16. Structures of the 20 (17+ the 3 Figures at the Bottom) Compounds Selected by Molecular Topology Together with the
Values of DF1 and DF2 When Relevant

Table 17. Values Obtained for Percentage of Relaxation and pD2 (pD2 ) - log EC50) for Selected Compounds

compd relaxation (%) (0.1 mM) pD2 (-log EC50)
no. of
tests

theophylline (reference drug) 77.0( 0.0 4.69 6
3-coumarine carboxı´lic acid 0.0( 0.0 4
genisteine 73.7( 6.1 4.60 8
naringenin 70.5( 10.1 4.60 8
4-methoxy-genisteine 57.5( 4.9 4.65 9
umbellipherone 75.4( 6.5 4.50 8
esculetin 74.7( 6.8 5.35 9
fisetin 88.9( 2.0 4.60 14
hesperetin 87.4( 4.0 4.75 8
chrysin 60.8( 5.6 4.70 13
baicalein 65.4( 4.6 4.50 10
apigenine 58.2( 2.4 4.60 7
7-carboximethoxy-4-methyl-coumarine 12.8( 3.2 6.90 5
sylimarine 48.2( 3.5 4.50 8
morin 58.2( 6.6 4.50 8
acacetin -38.4( 4.9 4
4-methyl-umbelliferyl-enantate 46.9( 5.6 4.65 17
escopoletin 61.7( 2.1 4.80 8
R-naphtoflavone 41.6( 4.7 4.95 10
7-mercapte-4-methyl-coumarine 55.1( 4.8 4.55 15
4-methyl-umbelliferyl-4-guanidine benzoate HCl monohydrate 80.8( 1.5 4.45 9

1152 Chemical Reviews, 2008, Vol. 108, No. 3 Garcı́a-Domenech et al.



The substructural fragments were noncyclic and contained
bond orders from one to three. The fragments and functional
groups were computationally attached to the base structure
either at single sites or as connections between previously
defined attachment sites. These could be connected by each
of their available atoms, and the formation of multiple bonds
and cyclic structures was allowed in these steps. The
computer program determined whether each new molecule

designed was potentially active according to a predefined
QSAR linear model based on Randic´-Kier-Hall type
indices.

The program also allowed the user to select the number
of structures to be generated by implementing an adjustable
screening level in the construction process which varied from
a relentless exhaustive search of each isomer to wide leaps
within the space of possible graphs. This procedure generated
an adjustable molecular diversity. The usual strategy con-
sisted of initial runs with wide intervals for the acceptable
QSAR equation values and high diversity. In successive runs
designed around the newly selected structures, the intervals
were narrowed and the diversity was decreased. Finally, the
compounds expected to be most active were synthesized and
tested, and the test results were in turn used to refine the
QSAR model. Figure 23 shows a scheme of the algorithm
for molecular design of new structures.

Example: Non-narcotic Analgesics.116 New analgesic
drugs have been designed using molecular topology with
linear discriminant analysis and connectivity functions using
different topological descriptors.117 The compounds 2-(1-
propenyl)phenol, 2′,4′-dimethylacetophenone,p-chloroben-
zohydrazide, l-(p-chlorophenyl)propanol, and 4-benzoyl-3-
methyl-l-phenyl-2-pyrazolin-5-one were particularly notable,
showing as they did analgesic values larger than 75% versus
ASA (acetylsalicylic acid), the reference drug. The usefulness
of this design method has been demonstrated in the search
for new chemical structures having analgesic effects, some
of which could become “lead drugs”.

The different base structures used in this design step are
collected in Table 19. The results of analgesia for each of
the designed and selected compounds are shown in Table
20.

Figure 19. Scheme of molecular design through virtual combi-
natorial syntheses and computational screening.

Figure 20. Symmetric cyclic anhydrides represented in the
carbonyl fragments database.

Figure 21. Phenols and anilines represented in the phenoxy and
phenylamino fragments database.

Figure 22. Compounds designed by virtual combinatorial chemical
syntheses and selected by computational screening.

Figure 23. Scheme of molecular design of new structures
(subroutines 1, 2, 3, and 4: formation of carbon-carbon bonds;
subroutine 5: inclusion of functional groups; subroutine 6: mo-
lecular selection).
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3.3. Applications
The most interesting results obtained by the methodology

described in the preceding paragraphs have been grouped
into the three categories shown in Tables 21-23. Each table

shows the name of the property or activity modeled, the best
equations obtained, and finally a reference to the correspond-
ing article. The categories represented in Tables 21-23 are
(a) the prediction of physicochemical parameters, (b) the

Table 18. Compounds Designed by Virtual Combinatorial Chemical Syntheses and Selected by Computational Screening, with Their
Experimental IC50 on HSV-1, and Cytotoxicity Results

no. compd IC50/µM cytotoxicitya

1 2-(2,4-difluorophenoxycarbonyl)-1-cyclopentene-1-carboxylic acid 1.4 low
2 2-(2,3,4-trifluorophenoxycarbonyl)-1-cyclopentene-1-carboxylic acid 1.8 medium
3 2-(2,3-difluorophenylcarbamoyl)-1-cyclopentene-1-carboxylic acid 0.9 no
4 2-(2,6-difluorophenylcarbamoyl)-1-cyclopentene-1-carboxylic acid 0.9 no
5 2-(2,3,4-trifluorophenylcarbamoyl)-1-cyclopentene-1-carboxylic acid 0.9 no

a Effect on cell growth of noninfected cellular monolayers, at the corresponding IC50.

Table 19. Base Structures Used in the Design Stage and Chemical Structures of the Compounds Selected as Theoretical New
Analgesics116

compd str R1 R2 R3 R4 R5

2-(1-propenyl)phenol I OH CHCHCH3 H H H
2′,4′-dimethylacetophenone I COCH3 CH3 H CH3 H
p-methylpropiophenone I COC2H5 H H CH3 H
1-(p-chlorophenyl)propanol I Cl H H CHOHC2H5 H
2-(1-hydroxy-3-butenyl)phenol I OH CHOHCH2CHCH2 H H H
3-chlorosalicylic acid I COOH OH Cl H H
4-hydroxyantipyrine V C6H5 CH3 CH3 OH
p-chloropropiophenone I Cl H H COC2H5 H
5-chlorosalicylic acid I COOH OH H H Cl
3′,4′-dimethylacetophenone I COCH3 H CH3 CH3 H
1-(p-chlorophenyl)propylamine I Cl H H CHNH2C2H5 H
3-amino-4-carbethoxypyrazole II COOC2H5 NH2

3-methylpyridazine IV CH3
p-chlorobenzohydrazide I CONHNH2 H H Cl H
4,5-dichlorophthalic acid I Cl Cl H COOH COOH
2,4-dichlorobenzyl alcohol I Cl H Cl CH2OH H
vanillic acid I COOH H OCH3 OH H
3-aminopyrazole II H NH2
methyl 2-methyl-3-furancarboxylate III COOCH3 CH3

Table 20. Results Obtained in the Study of Analgesic Activity for a Group of Designed and Selected Chemical Structures116

compd analgesia (%) ED50(mg/kg) LD50 (mg/kg) TI (LD50/ED50)

acetyl salicylic acid (ASA)a 49 ( 1c 100( 8 500+ 20 5
2-(1-propenyl)phenol 85( 1c 34 ( 5 720( 10 21
2′,4′-dimethylacetophenone 80( 1c 45 ( 5 700( 10 16
p-methylpropiophenone 56( 1c 100( 3 590( 20 6
1-(p-chlorophenyl)-propanol 78( 1c 83 ( 2 720( 30 9
2-(1-hydroxy-3-butenyl)phenol 41( 4a 114( 5 780( 20 7
3-chlorosalicylic acid 31( 1c 106( 1 900( 30 8
3-amino-4-carbethoxy pyrazole 64( 2b 87 ( 5 500( 30 6
3-methylpyridazine 45( 2c 121( 11 >2000 >22
4-hydroxyantipyrine 14( 1a

p-chloropropiophenone 11( 1
vanillic acid 28( 6
5-chlorosalicylic acid 6( 2
3′,4′-dimethylacetophenone 6( 3
1-(p-chlorophenyl)propylamine
p-chlorobenzohydrazide 80( 2c 72 ( 10 282( 8 4
4,5-dichlorophthalic acid 23( 3
2,4-dichlorobenzyl alcohol
3-aminopyrazole
methyl 2-methyl-3-furancarboxylate

a ASA was taken as a reference point in the analgesic experiments:ap < 0.050.bp < 0.010.cp < 0.001.
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prediction of pharmacological properties, and (c) mathemati-
cal models for the selection and design of new active
compounds, respectively.

Table 24 displays the results of a search using virtual
screening and molecular design for compounds with previ-
ously unrecognized biological/pharmacological activities.
This search was carried out on a group of compounds drawn
from catalogs and from drugs of different therapeutic utility,
and the activity discovered for each one was previously
unknown.

3.3.1. Prediction of Physicochemical Parameters

The QSAR models obtained for the prediction of physi-
cochemical properties are summarized in Table 21. Ad-
ditional details are available in the references cited.

3.3.2. Prediction of Pharmacological Properties

The QSAR topological models used to predict pharma-
cological properties are given Table 22. Additional details
are available in the references cited.

3.3.3. Mathematical Models for the Selection and Design
of New Active Compounds

Mathematical-topological models for the selection and
design of new active compounds are presented in Table 23.
More details are available in the references cited.

3.3.4. New Biological Activities Discovered through Virtual
Screening and Molecular Design

The new biological activities discovered through virtual
screening are illustrated in Table 24. Details on assays and
protocols can be found in the references therein.

4. Chemical Kinetics and Chemical Graph Theory

4.1. Kinetic Graphs

4.1.1. Kinetic Mechanisms

A short introduction will begiVen to theuse of graph-
theoretical concepts in chemical kinetics. The interested
resder should refer to the bibliography for a deeper view of

Table 21. QSAR Topological Models To Predict Physicochemical Properties

property predictive equation ref

viscosity logηexp ) 0.6643øp - 0.2634øpc - 0.039SsCH3 -
0.063SssCH2 + 0.083SOH+ 0.093SsNH2 - 0.598

118

F ) 175,r ) 0.951,s ) 0.17,s(cv) ) 0.19,N ) 117
chromatographic propertiesRF hRF2 ) 107.6+ 10.64øp

ν - 4.9G5
ν - 14.73Dp - 25.9PR0 119

F ) 24, r ) 0.916,s ) 8.8,N ) 23
hRF4 ) 89.0- 22.94øp

ν + 5.5G5
ν - 28.24Dpc - 3.2PR3

F ) 23, r ) 0.955,s ) 9.4,N ) 23
surface tensionσ σ ) 12.63+ 3.12TipoAtom - 12.110ø + 8.993øp

ν + 2.03κ0 +
2.93SumI + 10.34SHbint- 3.22SaOa- 0.55SF+ 4.40Numhbd

120

F ) 32, r ) 0.902,r2(cv) ) 0.73,s ) 3.83,N ) 77
thermal conductivityλ λ ) 0.124- 0.003Sum∆I + 0.010SsdCH- 0.025SsssCH+ 0.019SssdC+

0.011SaNHa- 0.004SCl- 0.004SBr+ 0.0098Numhbd+ 0.021Numhba
120

F ) 22, r ) 0.871,r2(cv) ) 0.700,s ) 0.01,N ) 74
refractive indices (linear polymers)nR nR ) 1.471- 0.0291ø + 0.0300øν - 0.006κ3 + 0.002Hmax - 0.011SsCH3 +

0.009SaCHa+ 0.012SssdC- 0.006SssO- 0.003SF- 0.0001W
121

F ) 170,r ) 0.980r2(cv) ) 0.948,s ) 0.01,N ) 79
glass transition temperatures,Tg Tg ) 7.533- 3.3941øν + 1.2842øν + 1.1483øp

ν + 0.295κR1 -
0.174SssO- 0.038SF+ 0.007W - 4.899J1 + 2.252J2 - 0.259V4

121

(linear polymers) F ) 62, r ) 0.945,r2(cv) ) 0.842,s ) 0.44,N ) 84
chemiluminescent behaviora DF ) -0.20- 87.987øCH - 276.127øCH

ν + 1.224SsdCH- 35.38J3
ν + 66.81J4

ν 122
(pharmaceuticals and pesticides) F ) 20, l ) 0.427,N ) 96

solubility (organic compounds) -log S) 0.803+ 0.3981κ + 0.234SaaaC- 1.195J1
ν - 1.5360D 123

F ) 141,r ) 0.927,s ) 0.90,N ) 97

a Chemiluminescent behavior if DF> 0.

Table 22. QSAR Topological Models To Predict Pharmacological Propertiesa

property predictive equation ref

tiw tiw ) 67.19- 32.94IShannon- 0.72SumI + 1.73Sum∆I 124
(antihistaminic) F ) 52, r ) 0.975,s ) 0.77,s(cv) ) 0.99,N ) 12

MICEpid.flocc. log MIC ) 0.097SOH- 0.243Phia 125
(antifungal) F ) 183,r ) 0.961,s ) 0.304,s(cv) ) 0.324,n ) 32

carcinogenicityb DFcarcino) 10.19+ 696.29øCH
ν - 45.88J5

ν - 10.16Shannon+
0.48SsdN- 0.07SsOH+ 0.63SaaaC- 0.44SssNH- 0.44SsssN+
1.30SdS+ 0.33nclass 126

discriminant
function DF

F ) 27,λ ) 0.43,N ) 164

IC50(anti-toxoplasma) log(1/MIC) ) -6.1+ 0.3G2 - 0.6G3 - 9.3J4 + 18.1J4
ν + 0.3PR1 127

quinolones F ) 24, r ) 0.933,r2(cv) ) 0.74,s ) 0.24,N ) 24,Cp ) 6.0
IC50(cyclooxigenase) logIC50 ) 0.32G1

ν + 6.34J1 - 0.68V4 + 1.4E - 2.25 118
analgesics F ) 18, r ) 0.908,s ) 0.49,N ) 20

UDU (unchanged log(UDU)) -4.671øν + 8.702ø - 3.643øp + 3.153øp
ν - 8.053øc - 9.23 111

drug in urine)
anti-herpes

F ) 41, r ) 0.957,s ) 12.4,N ) 25,Cp ) 3.03

a More details can be found in the cited references.b Carcinogenicity activity if DFcarcino > 0.
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the subject, and especially to the book by Temkin, Zeigarnik,
and Bonchev.26 In 1953, Christiansen138 proposed a clas-
sification of reactions using diagrams similar to graphs. In
1956, King and Altman139 further deepened the subject in
an investigation of the derivation of the rate laws of steady-
state reactions. In 1965, Temkin published a paper about the
application of graphs to the analysis of steady-state reac-
tions.140 He proposed the concept of kinetic graphs, which
reflect the structure of a mechanism in the space of
intermediates. Work on the subject was developed further

soon thereafter by Balaban,141,142who was followed by many
others (see references in ref 26), especially in the 1970s.
Graph theoretical studies of multiroute reactions with linear
mechanisms make it possible to build a classification system
based on the topological structure of reaction mechanisms
and thus enumerate and code all classes of mechanisms
involving any number of reaction routes. It will be assumed
here that all reactions that constitute a reaction mechanism
are elementary reactions, i.e., reactions which involve only
one or two molecules. The term “reaction network” is

Table 23. Mathematical-topological Models for the Selection and Design of New Active Compounds. Throughout the Last Column are
the References.

therapeutic group model ref

anticonvulsant DFtam ) -28.88- 1.944øpc
ν - 0.21G1

ν + 4.64G5 + 20.11J3
ν - 45.87J4 - 3.420D +

40.650C - 10.473Cp + 2.794Dp + 1.32PR0

112

F ) 10,λ ) 0.54,N ) 128
selection criterion: active if DFtam > 0

bronchodilator DF1 ) 3.071øν - 3.58G1 + 15.32J2 + 55.50J4 - 1.68PR1 + 0.879PR2 - 11.71 113
F ) 287,λ ) 0.271,N ) 739
DF2 ) 17.403Dp - 12.274Dp - 6.61
F ) 129,λ ) 0.315,N ) 192
selection criterion: active if DF1 > -1 and DF1 < 10 or DF2 > 0 and DF2 < 17

antihistaminic DF1 ) 7.20(1øc
ν) + 0.25G1

ν - 47.96J1 - 22.98J3
ν - 4.89(4Dpc) - 0.36L + 12.65 124

F ) 35,λ ) 0.347,N ) 146
DF2 ) 2.13SdssC+ 1.37SaaCH- 0.68SdsN+ 0.90SsssN- 0.10SsOH- 0.18SdO- 2.77
F ) 44,λ ) 0.298,λ )146
tiw ) 67.19- 32.94IShannon- 0.72SumI + 1.73Sum∆I
F ) 52, r2 ) 0.975,s ) 0.8,s(cv) ) 1.0,λ ) 12,p < 0.00001
selection criterion: active if 0> tiw > 0, 9> DF1 > 0, and 10.5> DF2 > 1.5

antivirals (anti-herpes) IC50 ) -17.36(4øp) + 41.39(4øpc
ν) + 21.71 111

F ) 38, r ) 0.914,s ) 0.6,n ) 18, Cp) 6.0
log(ID50) ) -1.42(0ø) + 4.81(0øν) - 11.41(3øp

ν) + 1.32(3øc
ν) + 4.17(4øpc) - 8.42

F ) 24, r ) 0.929,s ) 3.3,N ) 25,Cp ) 5.04
log(UDU) ) -4.67(1øν) + 8.70(2ø) - 3.64(3øp) + 3.15(3øp

ν) - 8.05(3øc) - 9.23
F ) 41, r ) 0.957,s ) 12.4,N ) 25,Cp ) 3.03
DF ) -1.17(0øν) + 2.11(3øp) + 2.79
F ) 23.4,λ ) 0.28,N ) 81
selection criterion: active if IC50 between-10 and 20, log ID50 between-5 and 3,

log UDU between-4 and 4, and DF between-1 and 5.
cytostatics DFcytostatic) -0.29- 64.21J5 + 2.89(4Dp) 128

F ) 75,λ ) 0.64,N ) 264
selection criterion: active if DFcytostatic> 0

mycobacterium aVium-M DF ) -2.6+ 20.1(3øCH) - 12.9(4øc) + 42.5(4øc
ν) + 25.6(6øCH) - 2.2G3

ν + 2.4G4
ν 129

(quinolones) F ) 31,λ ) 0.37,N ) 114
selection criterion: active if DF> 0

antibacterials DFantibact) -3.635+ 0.934(0D) + 5.993DP1
ν 130

F ) 98,λ ) 0.56,N ) 355
selection criterion: active if DFantibact> 0

antifungals DFantifung) 3.52+ 0.78G1
ν - 5.85G5 + 34.85J2 - 39.54J2

ν + 34.42J3
ν - 12.29(3øp/3øp

ν) +
4.21(3øc/3øc

ν) - 1.45PR0

131

F ) 17,λ ) 0.32,N ) 90
selection criterion: active if DFantifung> 1.0

antimalarials DF1 ) 0.56+ 3.25(3øc) - 27.88(4øc
ν) - 8.64J2 132

F ) 9.8,λ ) 0.55,N ) 59
DF2 ) -2.92+ 6.45(3øc) - 2.78(4øpc) + 0.39G1

V - 1.72G3 - 2.24(3Cc) - 2.62PR1 + 1.66PR2 + 0.04S
F ) 8.9,λ ) 0.35,N ) 60
selection criterion: active if DF1 and DF2 are>1.0

toxoplasma gondii DF1 ) -26.99+ 3.06G4
ν + 76.20J3 + 1.09(4Cc) - 1.30PR2 + 0.07S 133

F ) 43,λ ) 0.18,N ) 66
DF2 ) -54.6- 2.8(4øp

ν) - 1.2G2 + 1.4G2
ν - 4.6G4 + 254.7J4 + 176.9J4

ν - 190.8J5
ν +

3.3R + 1.4L - 1.5PR1 - 1.6PR3

F ) 30,λ ) 0.16,N ) 98; selection criterion: active if DF1 and DF2 are>0
non-narcotic analgesics DF) -1.32(0ø) + 4.67(1ø) + 1.96(1øν) - 6.56(2øν) - 4.25(3øp) - 4.11(3øc) + 2.68(3øp

ν) +
13.31(3øc

ν) + 1.28(4øp) + 11.75(4øc) + 1.22(4øpc) - 0.04
116, 117

F ) 9.3,λ ) 0.198,N ) 82
log IC50 ) 0.32G1

ν + 6.34J1 - 0.68V4 + 1.4E - 2.25
F ) 18, r ) 0.908,s ) 0.49,N ) 20
selection criterion: active if DF< 0.686 and 3.5> log IC50> 0
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normally used as a synonym for “reaction graph”, a construct
which represents the different transformations of species
participating in the elementary reaction. A reaction mecha-
nism is said to be linear if it is expressed by a sequence of
steps each of which contains at most one intermediate on
one or both sides of the step. A nonlinear mechanism
contains at least one elementary step in which the number
of intermediates on one or both sides of the step is greater
than one. A reaction graph is linear if there is no need to
introduce bipartition (or multipartition) of edges and vertices.
Bipartite reaction graphs are not linear because the set of
vertices is divided into two proper subsets, and the vertices
of different subsets are not equivalent. Vertices and edges
of reaction graphs can have different labels that denote the
ordinal numbers assigned to the corresponding reaction steps.
In this section on reaction graphs, only linear reaction graphs
will be treated in detail. Linear mechanisms can be described
by both linear and nonlinear reaction graphs. However,
nonlinear reaction graphs of linear mechanisms can always
be reduced to linear reaction graphs without loss of general-
ity. The vertices of kinetic graphs, as first proposed by
Temkin, denote intermediates, while the edges (arcs) denote
elementary steps. Intermediates are species that are produced
in some reaction steps and consumed in other steps and do
not appear in the overall reaction. Species that are not
intermediates are called terminal. The probability (weight)
ωi of the ith step is assigned to the respective edge of a
kinetic graph. Some species which are not involved in the
overall stochiometry of a reaction are instead involved in
reversible activation of a catalyst precursor, deactivation of
a catalyst, or binding of intermediate species by reagents or
products. These species are practically involved in mass
balance of the intermediate species. Species of this sort

are depicted with pendant vertices, i.e., with terminal vertices
of degree one. As an example, let us take the three-step
mechanism of the following overall catalytic reaction, with
three intermediate species,I1, I2, andI3: A + B a C + D,

This mechanism is shown as a kinetic graph in Figure 24,
in which the undirected edges 1 and 2 represent reversible
reaction steps and the directed edge 3 represents an irrevers-
ible step. Let us now suppose that two new steps are added
to this mechanism, i.e.,

Figure 25 shows the corresponding kinetic graph, in which
two pendant vertices are now evident. The overall reac-
tion, A + B a C + D, is obtained by summing steps 1-3,
upon which allIi vanish. Figure 26 gives an example of a
linear reaction network with two independent routes, five

Table 24. New Biological Activities Discovered through Virtual Screeninga

activity found selected drugs ref

cytostatic 6-azuridine, quinine 128
antibacterial 1-chloro-2,4-dinitrobenzene, 3-chloro-5-nitroindazole, 1-phenyl-3-methyl-2-pyrazolin-5-one,

neohesperidin, amaranth, mordant brown 24, hesperidin, morine, niflumic acid, silymarine, fraxine
134, 130

antifungal neotetrazolium chloride, benzotropine mesilate, 3-(2-bromethyl)-indole, 1-chloro-2,4-dinitrobenzene 131
hypoglycaemic 3-hydroxybutyl acetate, 4-(3-methyl-5-oxo-2-pyrazolin-1-yl) benzoic acid, 1-(mesitylene-2-sulfonyl)

1H-1,2,3-triazole
135

antivirals (anti-herpes) 3,5-dimethyl-4-nitroisoxazole, nitrofurantoin, 1-(pyrrolidinocarbonylmethyl)piperazine, nebularine,
cordycepin, adipic acid, thymidine,R-thymidine, inosine, 2,4-diamino-6-(hydroxymethyl)pteridine,
7-(carboxymethoxy)-4-methylcoumarin, 5-methylcytidine

111

antineoplastic carminic acid, tetracycline, piromidic acid, doxycycline 136
antimalarial monensin, nigericin, vinblastine, vincristine, vindesine, ethylhydrocupreine, quinacrine, salinomycin 132
antitoxoplasma cefamandole nafate 133

prazosin
andrographolide
dibenzothiophene sulfone
2-acetamido-4-methyl-5-thiazolesulfonyl chloride

antihystaminic benzydamine 137
4-(1-butylpentyl)pyridine
N-(3-bromopropyl)phthalimide
N-(3-chloropropyl)phthalimide
N-(3-chloropropyl)piperidine hydrochloride
5-bromoindole

bronchodilator griseofulvin, anthrarobin, 9,10-dihydro-2-methyl-4H-benzo 5,6-cyclohept[1,2-d]oxazol-4-ol,
2-aminothiazole, maltol, esculetin, fisetin, hesperetin, 4-methyl-umbellipheryl-4-guanidine benzoate

113

analgesics 2-(1-propenyl)phenol, 2′,4′-dimethylacetophenone,p-chlorobenzohydrazide,
1-(p-chlorophenyl)propanol, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one

116, 117

a For details, see the references in the last column.

Figure 24. Kinetic graph of the three-step reaction mechanism.
I1, I2, andI3 are intermediates, which are normally represented by
black vertices in the reaction graph.

A + I1 a I2 + C (1)

I2 + B a I3 (2)

I3 f I1 + D (3)

I1 + B a I1B (4)

I2 + D a I2D (5)
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intermediates, and six steps (1-6). It is the mechanism of
methane conversion by water vapor on nickel,

The intermediates from all of the steps are I (a divalent
reaction site on the Ni surface), ICH2, ICHOH, ICO, and IO
(a chemisorbed species). The reaction route represented by
the first of the overall equations incorporates steps 1-4, and
the reaction route represented by the second overall equation
incorporates steps 5 and 6. The KG (kinetic graph) cycles
are given for these equations in Figure 26.

Normally, the task of classifying reaction graphs is
facilitated by using kinetic face graphs (KFGs) of cycle
graphs (CGs). Kinetic face graphs are defined on the basis
of cycle adjacency in the initial kinetic graph. If KG is a
kinetic graph with cyclomatic numberµ, as defined in the
treatment of dual indices, thenµ independent cycles of KG
induce a cycle graph CG which describes the adjacency of
µ cycles of the kinetic graph KG upon which it is based
[B(KG): the basis kinetic graph], with two vertices of CG
being adjacent if the corresponding cycles of KG are ad-
jacent. The loops of a KG are treated as cycles, and an edge
is said to be a diagonal of a cycle when it joins two non-
adjacent vertices of a cycle. Summing up, each vertex in a
KFG (or CG) represents a cycle in the starting KG with a
KFG edge representing the adjacency of a pair of KG cycles.
When the edges of a cycle have a KG bridge between cycles
in common, they are classified as anA-class cycle linkage.
When the edges of a cycle have a vertex in common, they

are classified as aB-class cycle linkage (Figure 27). And,
finally, when the edges of a cycle have a KG edge in
common, they are classified as aC-class cycle linkage.A,
B, andC are the basic classes of linear reaction networks.
Kinetic face graphs make possible the canonical numbering
of KG vertices, edges, and cycles, which is what is needed
for the coding and enumeration of linear networks (i.e., a
reaction graph).

4.1.2. Categories and Subcategories
The principal factors determining the network category

and subcategory of a KG are the number of cycles and
vertices in it. The cycles in a graph are the basic determinants
of graph complexity. Linear reaction networks are thus
classified according to the number of independent routes,
i.e., assingle-routenetworks,two-routenetworks, etc. The
number of graph vertices and graph edges are relevant to
the number of intermediates and the number of elementary
reactions (steps), respectively. The well-known Euler relation
for a graph,c ) e - V + 1, which ties together the number
of cycles (c), the number of vertices (V), and the number of
edges (e), lets us infer that in a KG the number of linearly
independent routes is equal toc (also called the cyclomatic
number), the number of steps is equal toe, and the number
of intermediates is equal toV. This again means that either
the number of steps (edges) or the number of intermediates
(vertices) is independent once the routes are fixed. It is
advantageous to use the KG vertices, since in multiroute
networks there are fewer KG vertices than edges, i.e., fewer
intermediates than steps, and for this reason the subcategories
of one-intermediatenetwork,two-intermediatenetwork, etc.
are useful.

It should be noticed that the original Euler relation is
usually written asV + f ) e + 2, wheref is the number of
faces. The given modified relation (c ) e- V + 1) is correct
for planar graphs (e.g., pyrene) but not for 3D structures such
as adamantane, unless they are drawn as Schlegel dia-
grams3,4,6). In fact, the reduced formula does not account
for the “outside” of a graphas a face.Thus, in adamantane
from the Schlegel projections, one obtainsc ) 12 - 10 +
1 ) 3, while from the Euler relation one obtainsf ) 4, since
one of the four cycles is a linear combination of the three
others.

4.1.3. Types
The way in which the KG cycles are connected determines

the types and classes of linear networks. The previously
described concept of a kinetic face graph, KFG, is central
here. The larger the number of KFG edges, the more
interconnected are the reaction routes, so that a more complex
type of reaction network is produced in the hierarchical
classification. Assigning serial numbers to KFGs according
to the number of KFG edges to assign the type of a linear
network is a satisfactory solution for linear networks with
up to four routes, but starting with five-route networks,

Figure 25. Kinetic graph with two pendant vertices used to
describe the influence of two inactive intermediates, I1B and I2D.

Figure 26. Kinetic graph (KG) of methane conversion by water
vapor on Ni, whose mechanism is described in steps 1-6. Vertices
1-5 correspond to I, ICH2, ICHOH, ICO, and IO, respectively.
Edges 1-6 stand for the respective reaction steps 1-6.

CH4 + I a ICH2 + H2 (1)

ICH2 + H2O a ICHOH + H2 (2)

ICHOH a ICO + H2 (3)

ICO a I + CO2 (4)

I + H2O a IO + H2 (5)

IO + CO a I + CO2 (6)

CH4 + H2O ) CO + 3H2

CO + H2O ) CO2 + H2

Figure 27. Kinetic graph (KG, left) and the corresponding kinetic
face graph or cycle graph (KFG or CG). The CG edges [1,2], [2,3],
and [2,4] areC-class cycle linkages, while [1,4] and [3,4] CG edges
areB-class cycle linkages.
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several groups of KFGs with the same number of edges exist,
which would require additional classification criteria. How-
ever, to avoid introducing other serial numbers, only the
number of edges will be used as a classification criterion.
The numberL of types of linear reaction networks with more
strongly interrelated reaction routes increases when the
number of edges is increased. Tables 25-27 illustrate the
steadily increasing number and complexity of linear reaction
networks having 1 to 5 routes with the number of KFG edges
being from 0 to 10.

4.1.4. Classes
Classes of linear reaction networks within each type are

defined depending on the manner in which pairs of reaction
routes are interrelated. There are only three classes of two-
route mechanisms: the already seenA-, B-, andC-classes,
which correspond to a pair of KG cycles connected via a
bridge, a common vertex, or a common edge, respectively
(Figure 28). A bridge is the weakest kind of connection
between two KG cycles. The cycle interrelation is stronger
in classB, where the two routes share a common intermedi-
ate. It is particularly strong in classC, where the two routes
share one or more steps. When dealing with multiroute
networks, a fourth two-route classZ is formally introduced
to mark the absence of linkagesA, B, or C between the pair
of corresponding KG cycles. The multiroute classes are
combinations of the two-route classes, and they describe
exhaustively all pairs of KG cycles. It is useful to introduce
a larger classification unit termed ageneralized classand
denoted withAaBbCc, wherea, b, andc are the total number

of cycle adjacencies of typesA, B, andC, respectively. Some
examples of generalized classes areA2, AB2, BC2, C3, etc.
The sum of the subscripts equals the total number of KFG
edges (a + b + c ) L), which determines the network type.
The number ofZ type indirect cycle linkages (here omitted)
can be retrieved froma + b + c + z ) M(M - 1)/2, where
M is the number of routes. This relationship states that the
sum of all four superscripts equals the total number of edges
in the complete KFG with the same number of routesM.

4.2. Kinetics Graphs and Rate Laws
The general rule allowing one to use graphs for solving

problems associated with a linear rate law,y ) ax, is given
in eq 33, whereinxi andxj relate to concentrations, whileDi

andDj are the determinants of the respective graph vertices.

Consider the KG graph of the following mechanism, which
is depicted in Figure 29

The weightωi of the ith arc is the ratio of the ratewi of the
ith step and the concentration of the respective intermediate
species. Thus, for the KG of Figure 29, we have

Table 25. Enumeration of the Types (L) of Linear Reaction
Networks with 1-5 Routes (KFG Vertices)

Table 26. TypesL ) 0-6 of Linear Reaction Networks Having
M ) 1-4 Routes

Table 27. TypesL ) 4-10 of Linear Reaction Networks Having
M ) 5 Routes

Figure 28. Four basic classes of linear two-route reaction networks.
ClassZ refers to the nonadjacent pair of cycles 1 and 3. Substituting
any loop for a cycle of arbitrary size preserves the class.

xi/xj ) Di/Dj (33)

Figure 29. Kinetic graph of mechanisms 1-3 in standard (top)
and expanded (bottom) forms.

A + I1 a I2 (k+1, k-1) (1)

I2 + A a I3 + B (k+2, k-2) (2)

I3 a I1 + B (k+3, k-3) (3)

ω+1 ) w+1/[I 1] ) k+1[A][I 1]/[I 1] ) k+1[A] (34)

ω-1 ) w-1/[I 2] ) k-1[I 2]/[I 2] ) k-1 (35)

ω+2 ) w+2/[I 2] ) k+2[A][I 2]/[I 2] ) k+2[A] (36)

ω-2 ) w-2/[I 3] ) k-2[B][I 3]/[I 3] ) k-2[B] (37)
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The following steps may be used to derive the value of
determinantDi.

Step 1: Write the sum of weights of all arcs that leave
each vertex, e.g.,

Step 2: DeriveDi* by taking the product of sums of step
1 so that theith sum is excluded from theith product, while
others are preserved:

Step 3: From the products derived in step 2, delete the
terms that consist of weights of a circuit, remembering that
in a trivial case these weights are the weights of the forward
and reverse elementary steps. Thus, in the case under
consideration, the termsω+1ω-1, ω+2ω-2, andω+3ω-3 should
be deleted. Following these steps, we arrive at

Formula 33 also allows deriving the concentration of any
intermediate species through the concentration of a catalyst
Ii, the concentration of a 0-species (which is equal to unity),
or the total concentration of a catalyst. In the case of
heterogeneous catalysis, the total catalyst concentration
equals the total concentration of active sites on the catalyst
surface, which is also unity. The related expressions are given
in eqs 42 and 43.

Here [X]∑ is the overall concentration of all catalysts. If
concentrations are the proportion of catalytst surface occupied
by Xi, then [X]Σ ) 1. For a noncatalytic reaction, we can
derive eq 44, in whichD0 is the determinant of a zero species.

For a kinetic graph with pendant vertices, such as in Figure
25, where there are two pendant vertices, the edges incident
with these vertices depict equilibrium steps within steady-
state or pseudo-steady-state processes. In a graph containing
pendant vertexes, one can specify as in eq 45 the function
Fi associated with each vertexi, which characterizes the
extent to which a catalyst is bound by ligands or species.

In eq 45, the sum is taken over all pendant vertexessadjacent
to vertexi. Thus, eq 43 can be modified to yield eq 46.

Thus, in the KG of Figure 25, functionsF of verticesI1 and
I2, which are adjacent to these two pendant vertices, areF1

) 1 + K1[B] and F2 ) 1 + K2[D], respectively. Then, if
[X] ∑ ) 1, we have

The rate of reaction which corresponds to the mechanism
of Figure 25 can be written in two ways, as shown in eqs 49
and 50.

If [X i] in eq 46 is a concentration of a free catalyst (Ii), the
quantityFst in eq 51 can be viewed as a reciprocal value of
the free catalyst steady-state concentration normalized to the
total catalyst concentration, i.e.,

Dj in eq 51 is the determinant of thejth vertex. Obviously,
if the process approaches equilibrium,Fst transforms to the
reciprocal normalized concentration of a catalyst at the
equilibrium point, as shown in eq 52.

Now we can derive the expressions given in eq 53,

and if the process approaches equilibrium so that [〈X j〉]eq/
[X j] f 1, we obtain eq 54,

in which 〈Di〉 and 〈Dj〉 are determinants of theith and jth
vertices that involve equilibrium or pseudoequilibrium
concentrations of reagents and products. Equation 54 relates
the kinetics and thermodynamics of complexation reactions
and shows how coefficients of a rate law are related to the
observed equilibrium constants as well as which of the
complexes of rate constant should be associated with the
equilibrium constants.

5. Application of Chemical Graph Theory to
Biomacromolecules

5.1. Descriptors for Biomacromolecules

5.1.1. Polypeptides
Randićhas introduced the molecular and shape profiles

to quantitatively describe the molecular structure.143,144This
approach is interesting because it allows the characterization
of the 3D structure of small as well as large molecules.
Molecular profiles were applied to protein 3D-sequences.145

ω+3 ) w+3/[I 3] ) k+3[I 3]/[I 3] ) k+3 (38)

ω-3 ) w-3/[I 1] ) k+3[B][I 1]/[I 1] ) k-3[B] (39)

I1: ω+1 + ω-3, the first sum

I2: ω-1 + ω+2, the second sum

I3: ω-2 + ω+3, the third sum

D1* ) (ω-1 + ω+2)(ω-2 + ω+3);
D2* ) (ω-2 + ω+3)(ω+1 + ω-3);

D3* ) (ω-1 + ω+2)(ω+1 + ω-3) (40)

D1 ) ω-1ω-2 + ω-1ω+3 + ω+2ω+3;
D2 ) ω+1ω-2 + ω-3ω-2 + ω+1ω+3;

D3 ) ω-3ω-1 + ω+1ω+2 + ω-3ω+2 (41)

[X i] ) [I i]Di/DI1 (42)

[X i] ) [X] ΣDi/ΣDi (43)

[X i] ) Di/D0 (44)

Fi ) 1 + ΣΣ(ωs/ω-s) (45)

[X i] ) [X] ΣDi/ΣiFiDi (46)

[I 3] ) DZ3/(DI1F1 + DI2F2 + DI3) (47)

[I 1] ) DZ1/(DI1F1 + DI2F2 + DI3) (48)

r ) w+3 - w-3 ) ω+3[I 3] - ω-3[I 1] (49)

r ) (ω+1ω+2ω+3 - ω-1ω-2ω-3)/(DI1F1 + DI2F2 + DI3)
(50)

Fst ) [X] Σ/[X j] ) ΣiFiDi/Dj (51)

Feq ) [X] Σ/[〈X j〉]eq (52)

[〈X j〉]eq/[X j] ) Fst/Feq ) ΣiFiDi/DjFeq (53)

ΣiFi〈Di〉 ) 〈Dj〉Feq (54)
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Thus, Randic´ and Krilov found that the molecular profile
approach is able to characterize the 3D structures of
schematic representations of 27 amino acid peptides com-
posed of polar and hydrophobic amino acids occupying all
sites of a 3× 3 × 3 cube, as proposed by Li et al.146 More
recently, these researchers have considered theD/D matrix,
in which the elements are the quotients between the respec-
tive geometrical (or Euclidean) and topological (number of
edges) atomic distances.147 Matricesk(D/D) are then obtained
by raising the elements ofD/D to a powerk. The folding
profile of a structure is the sequence of indiceskΦ, defined
as the leading eigenvalues ofk(D/D) divided by the number
of vertices of the chain considered. For a givenk, the k(D/
D) elements of a more folded structure will be smaller than
these elements calculated for a less folded one, and this is
directly related to the matrix leading eigenvalue. The folding
profiles have been successfully applied to the characterization
of the different secondary structures found in proteins.

Randić et al.148 have also devised a different approach
based on a graphical representation of DNA triplets to
obtaining descriptors useful for the description of protein
sequences.

Estrada has proposed and developed descriptors useful in
accounting for the 3D molecular structure in the description
of features specific to polypeptides as well as in measuring
the similarities between pairs of proteins.149 In this approach,
the 3D-structure index was defined asI ) tr(eB), whereB is
the adjacency matrix of the dihedral angles but with the
diagonal elements being the cosine of the corresponding
angle.149 This index accounted for the degree of folding in
small molecules as well as in peptide models.149

The torsion degree in a backbone chain, which is related
to the protein folding degree, can be characterized by theI3

index defined in eq 55,150,151

in which t is the number of dihedral angles in the backbone
andλi are the eigenvalues of the matrixB. If a peptide has
N amino acids,t ) 3N - 2, since each amino acid has three
dihedral angles and the extremes do not contribute. This
definition of I3 as a folding degree index is justified, since
it accounts for the intuitive folding order for a given
backbone chain having the same dihedral angles in different
bond positions.151,152The computation ofI3 from its definition
is cumbersome for the usual proteins, but it can be calculated
with the required precision from the spectral momentsµk of
B. The k-th spectral moment of ann × n matrix B is the
sum of the main diagonal elements (i.e., the trace) of the
matrix B raised to thek-th power. This magnitude is related
to the eigenvaluesλ ïf B by eq 56.

By using the definition ofI3, the MacLaurin series, and the
relationship of spectral moments to eigenvalues, we find that

The contribution of spectral moments of orders higher than

10 is negligible, and the truncation at a point after this value
is feasible without any loss of precision in the calculation
of I3.

The folding degree, measured asI3, does not correlate with
the number of amino acid residues, nor with several
published measures of the protein packing, such as Pt (Liang
and Dill’s total protein packing), OSP (Pattabiraman, Ward,
and Fleming’s occluded surface packing), and RG (the radius
of gyration of the protein).151 These last results suggest that
the concepts of folding and compactness are independent.
Another interesting result regardingI-based peptide similarity
is that the most folded peptides are not similar to each other
while the less folded ones are. This is apparently because
the more folded proteins have more specific functions than
the less folded ones. This index has been successfully applied
to the analysis of 3D protein similarity in lysozymes;153 the
numerical characterization of the protein secondary structure
as demonstrated by a representative set of proteins;151 and
the influence of factors external to the amino acids sequence
such as the effect of temperature on ribonuclease A.151 The
correlation of the reduction potential of azurins and pseudo-
azurins with the degree of folding was accomplished by a
local version of theI3 index.152

Proteomic maps have also been characterized through
useful graph representations and invariants. Several models
have been published based onk(D/D) matrices and folding
profiles of selected spots,154 the partial ordering of map spots
and the distance-adjacency matrix,155,156 the adjacency
graphs of spots at a distance smaller than a critical value
and different classes of associated matrices,157 a similarity
index and self-organizing map,158 the nearest neighborhood
of spots,159-161 a canonical labeling of the vertices of a Hasse
diagram embedded in the spot adjacency matrix,162 and
complex weights joined by relative abundance and matrix
invariants.163 For a review on this topic, see ref 164.
Proteomic biodescriptors have been useful in the character-
ization of toxicity and, eventually, when combined with
molecular descriptors, in its quantitative prediction.165,166

5.1.2. Polynucleotides

Nucleic acid sequences can be condensed into representa-
tions and numerical invariants to explore similarities between
sequences, coding, ordering, and structure-activity correla-
tion. Randićet al. have recently been exploring this interest-
ing field. First, a condensed representation of sequences was
developed to facilitate the comparison of similar sequences
from different sources.167 Then, a method to quantify the
similarity of sequences was published.168 This method relied
on 2D walks defined by the sequence of bases and the
corresponding eigenvalues ofD/D matrices between bases.
More approaches to nucleic acid sequence coding have been
outlined:

• DNA profiles consisting of average matrix elements,169

or the leading eigenvalues170 of the 4× 4 matrix that contains
the average distance between base pairs, and other matrices
whose elements are the higher powers of these average
distances.

• Eigenvalues of matrices extracted from 4× 4 × 4 tensors
that contain the frequencies for each triplet of consecutive
bases to be found in the sequence.171

• Directed walks on the plane generated by vectors that
are functions of the type of base.172

• Process-control-like graphs that represent the sequence
order in abscissas and base in ordinates, and diverse matrices

I3 )
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associated with the distances between vertices such as the
Euclidean distances, theD/D matrix, or the (L/L) matrix,
where the quotient between 3D Euclidean distances and the
sum of geometrical lengths (by powerk) of edges between
two vetices are considered.173 Invariants from these matrices
and also from the matrixk(L/L), whose elements are elevated
to powerk, are discussed in ref 174.

• Dots on a worm curve representing an arbitrary two-
digit binary code that encodes the different bases, while the
nearest neighbor distance invariants encode the dots.174,175

• A cube with 3× 3 × 3 edges whose vertices represent
each codon in which a directed walk follows the sequence
of codons, while the elements of the Euclidean distance
matrix to powerk represent the codon pairs.176

• Similarities based on bandwidth averages of Euclidean
distance matrices obtained from a 4D representation in which,
for every base in the sequence, each coordinate equals the
number of A, T, G, and C found in the sequence until the
base considered.177

• N-dimensional Jeffrey-like walks and Ward method for
hierarchical clustering of DNAs from different species.178

• Four-color maps constructed from spiral sequence
arrangements that give ten kinds of topological distance
matrices between each pair of color regions and the average
matrix elements associated with them.179

6. Meaning of Basic Molecular Connectivity
Indices

In the following, four proposed interpretations of MC
indices will be given. Recently, interpretations of other
relevant topological indices, such as the Wiener index, the
Hosoya index, the Balaban index, and the Harary index, have
been proposed. The reader interested in these interpretations
should consult ref 180.

6.1. The Molecular Connectivity Index sA
Quantum Interpretation

It is beyond doubt that connectivity indices yield excellent
results in the prediction of physical, chemical, and biological
properties; however, no definitive statements can be made
as to the physical meaning of such indices in particular and,
more generally, even for other graph theoretical descriptors.
Galvez has published papers providing some insight along
these lines. In an initial paper,181 he demonstrated that the
first-order connectivity index may be related to both elec-
tronic and vibrational energies of alkenes and conjugated
hydrocarbons according to the following formula (eq 58):

HereR andâ stand for the Coulomb and resonance integrals,
respectively, as defined in the original Hu¨ckel MO theory
and Nπ is the number ofπ electrons of the conjugated
hydrocarbon. This equation allows for a very good fitting
to, for example, the Hu¨ckel results for resonance energies.
Moreover, the equation can be refined into a more accurate
version if we include the influence of the overlap integral,
S. On the other hand, it is easily seen that vibrational energy
may also be expressed as a function of the topological
valenceδ. Thus, the values ranging from 1634 to 1675 cm-1

of the vibrational frequencies for all substituted ethylene
derivatives follow surprisingly well the relationship in eq
59

where the subscripts 1 and 2 refer to the ethylene carbons.
In another paper, Galvez182 has further developed an

interpretation presented by Estrada and based on the concept
of accessibility. The formalism is purely geometrical and is
based on (i) the concentric spheres representing the covalent
and Van der Waals volumes, (ii) the relation between
molecular volume and surface area in alkanes, and (iii)
connectivity indices. The demonstration is based in the loss
of accessible volume per atom as two atoms bind each other.
In this paper, the representation as concentric spheres of the
covalent and Van der Waals volumes as well as the loss of
accessible volume given by the intersection of the Van der
Waals volumes when the two covalent spheres are in contact
provide a measure of the loss of accessibility. According to
these results, the molecular volume and surface area of
alkanes can be expressed as a function of0ø and1ø, i.e., the
zero-order and first-order connectivity indices, respectively.
The linear regression equations yield values ofr ) 0.987
andr ) 0.991 for volume and surface area with0ø and1ø,
respectively. These results fit well with the known fact that
with an increasing degree of branching, i.e., number of
tertiary or quaternary carbons, the molecular volume in-
creases while the molecular surface area decreases. The key
role played by the molecular volume and surface area is well-
known for experimental properties ranging from molecular
polarizibility to boiling temperatures and, in general, for all
intermolecular forces and interactions. The molecular ac-
cessibility,A, is an important concept which aids in deriving
the given model for the connectivity indices. Alternative
definitions of this concept can be given in terms of
connectivity indices, as, for example, in eq 60.

Despite the simplicity of this definition, it is possible to
predict the increment of the standard free energy (and hence
the spontaneity of the process) for positional isomerization
between pairs of hydrocarbons and even more complex
molecules. For instance, the equilibria betweenn-butane and
isobutane, between 2-methylpentane and 3-methylpentane,
between propylamine and isopropylamine, and between
o-methylaniline andm-methylaniline may all be predicted.
All these features reinforce the idea that at least some
important physical and geometrical molecular parameters can
be expressed as functions of topological indices and thus
bypass the need for cumbersome calculations. Altogether,
Galvez’s results support the idea that molecular topology is
not only an alternative but also an independent approach as
compared to conventional methods based on quantum or
classical mechanics.

6.2. The Molecular Connectivity Index sA Kinetic
Interpretation

The kinetic interpretation of the first-order molecular
connectivity index,1ø, was proposed by Kier and Hall.57,183

The Kier-Hall interpretation turns around the concept of
bimolecular encounter accessibility,Aij. This interpretation
is centered on the bond index contribution of1ø (see eq 5),
Cij ) (δiδj)-0.5. This algorithm encodes the relative acces-
sibility of the ij biatomic fragment of a molecule in
encountering another fragment of a different molecule, i.e.,

Eπ ) NπR + 4â1ø (58)

ν (cm-1) ) 1780.6- 147.2[(1/δ1) + (1/δ2)]
1/2

(59)

A ) 4(1øV) - 0øV (60)
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Cij ) Aij. Theδ values themselves are thus viewed as a count
of neighboring atoms bonded to an atom in the HS chemical
graph, which corresponds to the number ofσ electrons
contributed by that atom to bonded atoms, while the 1/δ
values are viewed as the fraction of the total number ofσ
electrons contributed to each bond formed with that particular
atom. In an alkane chemical graph (excluding the trivial case
of ethane, where the biatomic fragment and the molecule
coincide), the (δi, δj) values vary widely, ranging from (1,
2) for highly exposed fragments to (4, 4) for highly buried
fragments. The correspondingAij values range from 0.707
to 0.250. Thus, exposedij fragments with largeAij values
have a high accessibility while buried fragments have a low
accessibility and lowAij values. Let us now imagine that
pairs of such fragments on two different molecules, M and
N, undergo a bimolecular encounter. This would yield four
different types of encounters, i.e., (1, 2)M-(1, 2)N, (1, 2)M-
(4, 4)N, (4, 4)M-(1, 2)N, and (4, 4)M-(4, 4)N, and the single
accessibilities of each fragment are 0.707 and 0.250. If the
encounter probability between the two fragments is assumed
to be the productpij ,kl ) (Aij)M(Akl)N, then for the four different
types of encounters (rounding):p12,12) (p12)2 ) 0.500,p12,44

) p44,12 ) 0.177, andp44,44 ) (p44)2 ) 0.063. The model
can present some degeneracies; that is, encounters with (2,
2) fragments and with (1, 4) fragments are equiprobable. The
total bimolecular encounter probability for the present (rather
strange) case ispT ) (p12)2 + 2p12,44 + (p44)2 ) (p12 + p44)2

) pMpN ) (0.957)2 ) 0.916. Here, but not always,pM ) pN

) 0.957. The interesting final result is thatp12 + p44 ) 1ø(M)
)1ø(N). Thus, the total bimolecular encounter probability
for any molecule which is encoded by a chemical graph is
pT ) pMpN )1ø(M)1ø(N) ) ∑(Aij)M∑(Akl)N, and the single
probabilities arepM )1ø(M) ) ∑(Aij)M and pN )1ø(N) )
∑(Akl)N. Thus, we see that the molecular connectivity index,
a graph-theoretical index, encodes information about bimo-
lecular interactions by partitioning them into the interactions
among the single biatomic fragments of a molecule.

For hydrogen-suppressed chemical pseudographs, which
encode atoms other than carbon atoms and for which the
index1øv is used, things are more complex. Here, different
types of bimolecular encounters are possible among the
different fragments comprising the molecule, as in, for
example, an apolar-apolar external encounter with high
probability such as CH2-CH3 on CH2-CH3 or an apolar-
polar external encounter such as C-OH on CH2-CH3 with
low probability due to the largeδν(ps)OH ) 5, as expected.
Now, the polar-polar external encounter (e.g., C-OH on
C-OH) has within this model a very low probability, which
is a seemingly unexpected result. Actually, a way out of this
difficulty is to admit that the polar encounter cannot be
treated in the same way as the apolar one. It could be
suggested that polar fragments interact, giving rise to van
der Waals bimolecular (or supramolecular) entities, and that
the encounters are among these entities. The total bientity
encounter probability between [M-N] and [O-P] could be
defined aspT ) pMNpOP ) 1øν(M-N)1øν(O-P), wherepMN

) 1øν(M) + 1øv(N) andpOP ) 1øν(O) + 1øν(P). This approach
as well as one centered on the concept of a variable
connectivity index1øf should be pursued. The suggestion that
connectivity indices should be discussed in terms of their
partitioning into bond contributions to better differentiate
between contributions from exposed and buried fragments
has recently been further developed and extended to other
type of indices.180

6.3. The Molecular Connectivity Index sA
Geometric Interpretation

This interpretation advanced by Estrada184 is centered on
the concept of the molecular accessibility defined as Acc(i)
) R(δi)-0.5, whereR is a proportionality constant. With this
definition, the zeroth-order molecular connectivity index is
strictly related to the accessibility parameter. We also have
Acc(i) ) â(L - I), where L is the circle perimeter
surrounding the atom,I is the arc shared with the circumfer-
ence of the neighbor atom, andâ is a proportionality constant
which can be seen as the specific atomic accessibility and
set equal to one, giving Acc(i) ) (L - I). Thus, the inverse
square root of the vertex degree can be seen as a component
of the relatiVe atomic accessibility perimeter(RAP). The
first-order molecular connectivity index,1ø, is made up of
bond contributions of the typeCij ) (δi)-0.5(δj)-0.5, which,
from what has been said, represents nothing else than the
relative bond accessibility areas (RBAs). Now, since1ø )
∑i*jCij, the 1ø can be considered as the relative molecular
accessibility area (RMA) when molecules, for this and the
previous index, are encoded with pure hydrogen-suppressed
chemical graphs. These areas represent the total areas that
are accessible from the environment surrounding the mol-
ecules, and the smaller the (δiδj) is, the larger the area
contributed by a singleCij, and consequently the accessibility
of the ij group, is. From this point of view, a cycle is made
up of equiaccessible points, while a chain is more accessible
at its external points while buried vertices are hardly
accessible. In going to pseudographs, which can encode
multiple bonds and nonbonding electrons, and whenδν

replacesδ, things become more complicated, but even here,
the concept of accessibility continues to be valid. For
pseudographs, a physical meaning should be given to the
circles belonging to the vertices, and this can be done by
introducing the van der Waals radii,rW. These radii decrease
with an increase in the number of electrons in the valence
shell. Now, it is possible to define the circumference,L, and
the length of the overlap arc,I, asL ) 2πrW and I ) θrW,
whereθ is the overlap angle between two adjacent circum-
ferences. Figure 30, top, shows the case of two overlapping
circles, centered atC andC′. Here,rW is the van der Waals
radii (distance CP or CP′), rcv is the covalent radii (bond
distance CO), andθ is the angle formed by PCP′. The
definition for the atomic accessibility for groups with the
same number of neighbors formally does not change, and in
fact, Acc(i) ) (L - I) ) rW(2π - θ). With multiple bonds,
the atomic accessibility is accounted for by the change in
the covalent radii,rcv, of the atoms supporting multiple bonds,
which is reflected inθ and thus in Acc(i).

In the bottom part of Figure 30, the upper values are the
Acc(i) values as a function of theδi

V. Here, a clear
proportionality is evident between both parameters, and it
is evident thatAcc(i) depends on a negative power ofδi

V.
Thus, for groups with the same number of neighbors,Acc(i)
) R′(δν

i)-p, where ap value of 0.5 can be suggested. For
groups with a different number of neighbors, the perimeter
of the atom is overlapped by the circumference of each
neighborı`ng atom. Here, the Acc(i) definition changes only
a bit, being now Acc(i) ) (L - δI), whereδ accounts for
the number of neighbors bonded to the corresponding atom.
In the bottom part of Figure 30, the bottom values are the
Acc(i) values plotted as a function of theδi

V for the case of
two neighbors. Comparing the two cases, we see that Acc-
(i) is made up of two contributions: one is related to the
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pseudograph aspect of the molecule and the other only to
its graph aspect. Both contributions can be encoded with a
single formula, i.e., Acc(i) ) 128(δi

V)-0.5 + 1149(δi) - 511.
Concerning higher-order indices, let us consider as an

example the second-order path index,2øp, which is defined
by 2øp ) ∑Cijk, with Cijk ) (δi)-0.5(δj)-0.5(δk)-0.5. This formula
can be considered as the multiplication of three accessibility
parameters which encodes a volume; that is, this term is the
volume that is accessible from the outside to three adjacent
atoms in a path of length 2 in a molecule. Similarly, higher-
order connectivity indices can be thought of as volumes in
hyperspaces. A deeper study of the exponentp in Acc(i) )
R′(δν

i)-p reveals that the optimal value forp is 0.27. If higher
row atoms are considered instead, then the contribution of
inner shell electrons should be included, as is done in theδν

definition of eq 3, even if, here, the older Kier-Hall13

definition for δV is used.

6.4. The Molecular Connectivity Index sA Variable
Index Interpretation

The variable connectivity index64-70 can be considered as
the index of an unknown pseudograph, as is evident from
its adjacency matrix, wherex is on the diagonal. The “reality”
of the unknown pseudograph is fixed by the value ofx (some
of these arguments are valid foryH). Let us look at some
validity domains forx, which can give rise to different

mathematical objects (see eq 23). Forx , δ, 1øf ) 1ø; that
is, the unknown pseudograph goes over into the correspond-
ing graph of the molecule. Forx ∼ δ, 1øf ) 1øv; that is, the
unknown pseudograph becomes practically a pseudograph,
andx represents multiple bonds or/and self-connections. In
this context, we could even speak of partial pseudographs,
as x could represent partial multiple bonds and/or partial
multiple self-connections. With this last concept, we are
moving away from graph theory and into the domain of a
non-graph-theoretical index whose real entity will become
clear in the next domain. For eitherx . δ or x , 0, we
have1øf ) 1/x; that is, the graph characteristics completely
disappear, and we have a pure “ad hoc” computational index.
For x < 0 and|x| ≈ δ and approachingδ either from the
left or from the right,1øf ) 1/ε . 1ø, with 0 < ε , 1; that
is, the graph is approaching the graph of a set of noncon-
nected vertices withδ ) 0. Here, the molecular character-
istics of the graph go by the board, and we face a practically
“atomic” graph. Further, analyzing eq 24, ifx . δ andyH

< 0, but |yH| ≈ δ, then the whole graph shrinks into the
graph of its part, i.e., that part of the graph which encodes
the heteroatom only. In many of these cases, the graph
interpretation of the molecule blurs even though the chemical
interpretation of the computation is enhanced, since the main
and the secondary contributions to the model can be better
distinguished. Theoretically, the1øf index, even though
defined as a graph-theoretical index within the frame of graph
theory, ends up on one side, rendering the purely graphical
representation of the molecule superfluous, but gives rise
on the other side to a new kind of “ad hoc” molecular
computational index.

The complete graph algorithm (see eq 3) may also have a
variable solution whenq is subjected to an optimization
procedure. Here also, there are some domains where the
graphical interpretation blurs. Forq . p‚r, we haveδν .
δν(ps), and the graph characteristics of the molecule go by
the board, as also happens for 0< q , 1, givingδν , δν(ps).
In both cases, together with the caseq < 0, δν becomes an
“ad hoc” computational parameter, and it gives rise to “ad
hoc” molecular computational indices.

7. Conclusions
During the present excursion through some quite recent

developments in mathematical chemistry, and especially in
chemical graph theory, we have encountered a wealth of new
graph-theoretical concepts and their successful applications
in modeling techniques which, as we have seen, extend even
to chemical kinetics and some characteristics of biomacro-
molecules. The field of mathematical chemistry and of the
corresponding graph-theoretical methods applied to chemistry
is an ever increasing field; the reader ought to see Randic´’s
recent review on phenomena which are usually treated by
quantum chemistry methods.

There are phenomena, especially in physics, that can be
interpreted by “absolute theories”, i.e., by theories that can
quantitatively predict a certain property of a system from
its fundamental parameters without using “adjustable exter-
nal” parameters. In these predictions, balancing computa-
tional efficiency with scientific accuracy is always a com-
promise, and in chemistry (and especially in physical
chemistry), this is a rather difficult task to achieve without
the help of “adjustable external” parameters, i.e., without
the help of “nonabsolute theories”. This is what happens,
e.g., with quantum chemistry whose modeling ability is

Figure 30. (Top) Scheme of the van der Waals circumferences of
two neighboring atoms. (Bottom) Plot of the atomic accessibility
perimeter, Acc(i) in pm, versus the valence degree,δν, of different
heteroatoms bonded to one (top values) or two neighbors (bottom
values).
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mainly based on adjustable external parameters, and even
in the newest approach in this field, the density functional
theory (DFT), there is a lot of (inspired) guesswork involved.
Problems arising with quantum methods in predicting
properties have brought into the field classical molecular
mechanics (MM) methods, where molecules are seen as a
group of tiny moving balls attached to each other by massless
springs. Chemical graph theory was brought into the field
in the second half of the 19th century to aid in solving a
chemical problem, the enumeration of organic isomers, by
also using an “absolute theory”. It has since then developed
into a highly structured field of scientific endeavor, some-
times remaining an absolute theory and at other times
developing into a “semiempirical” theory. In both cases,
chemical graph theory has been able to adhere to a more
than satisfactory degree to Giordano’s dictum regarding a
physicist’s task:185 “A physicist is a person who can calculate
anything within an order of magnitude.”
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9. Appendix

9.1. An Update
The present review is not a book and for this reason cannot

cover every new aspect of chemical graph theory, which has
consistently grown during these last years. This means that
some “new trends” have been left out to avoid overburdening
the review. In any case, some (but not all) aspects of this
growth can be briefly mentioned here. References 186-190
develop applications of topological computational methods
to be used for the development of new drugs, among them
being antihistaminic, antimalarial, antitubercolotic, and cy-
tostatic drugs. References 191-193 develop further interest-
ing work on a mathematical characterization of proteomics
and DNA. Reference 191 is just a reference book, and ref
192 is a paper about a dose/response curve for proteome
which illustrates for the first time the detection of hormesis
on the cellular level (up to now it has been known at a whole
organism level). Reference 193 illustrates instead the use of
a graphical representation for solving the DNA alignment
problem. Concerning reaction graphs, three international
works of Kvasnicka et al., who normally published inCollect.
Czech. Chem. Commun., deserve to be cited, and they can
be found as refs 194-196. Among Estrada’s many achieve-
ments during these last years are not only further works on
the graph-protein problem197,198 but also works on the
generalized topological indices (GTI),199-202 which would
by themselves deserve a review.

Last but not least, let us cite the stereoisomer enumeration
problem by graph methods, which is largely treated in

Fujita’s last volume (Vol. 4) of theMathematical Chemistry
Monographsedited byMATCHand cited at the end of this
Appendix. Actually, Vols. 1, 3, and 4, and the ones not yet
published, offer a wide and deep perspective on chemical
graph theory. Volume 2 is a nontechnical introduction to
some general aspects of science and is intended for the reader
with no more than high school algebra. In it the author tries
to explain the nature of some basic concepts in mathematics
and why, when, and how they are used in science and the
humanities.

9.2. Graph-Theoretical Software for Model
Purposes

9.2.1. APPROBE (& POLLY)

These two QSAR/QSPR related programs have been
developed at the Natural Resources Research Institute,
University of Minnesota, Duluth, MN, under the leadership
of S. Basak. (http://wyle.nrri.umn.edu/Basak/). Both pro-
grams have been licensed to Glaxo, now part of Glaxo Smith
Kline and Upjohn, now part of Pfizer. APPROBE is the
acronym for Atom Pair PROBE. It is a C program to
manipulate either atom pairs or topological torsions to
determine structure similarity/dissimilarity. It accepts SMILES
strings as molecular structure input. Using APPROBE, a
descriptor file or library file of structures may be generated.
This descriptor file may be either atom pairs or topological
torsions. SMILES is the acronym forSimplified Molecular
Input Line Entry System. SMILES is a linear notation for
chemical structures. SMILES strings afford an easy way of
entering certain types of structures in many programs. These
strings are unique for each structure and suitable for database
searching requirements. Correct strings should be capable
of being interpreted by the modeling system and yield a 2D-
or 3D-structure.203,204POLLY is a nickname for a tested and
documented computer program which calculates 98 different
types of topological indices for molecules containing up to
120 atoms composed of H, C, N, O, F, P, S, Cl, Br, or I
atoms. Among these indices, we can find, e.g., the Wiener
index, the molecular connectivity and valence connectivity
indices, the bonding connectivity indices, and the information
theoretic indices. It accepts a molecular description in the
form of SMILES notation but is easily adapted to other user-
oriented forms of input. The output consists of values of the
98 indices for each molecule including molecular connectiv-
ity indices, information theoretic indices, and indices of
neighborhood symmetry.

9.2.2. CODESSA

This is the acronym forComprehensiVe Descriptors for
Structural and Statistical Analysis. It is a program designed
by Katrizky, A. R.; Karelson, V.; Lobanov, A. R. University
of Florida, Gainsville, FL, for use in the study of structure
versus property or biological activity, and it calculates some
400 molecular descriptors which were designed before 1995.
Half of these descriptors represent various topological
indices.205 This package has recently been updated and is
marketed as CODESSA PRO (www.codessa-pro.com or
katrizky@chem.ufl.edu), and it is furnished with an advanced
variable selection procedure and with an even larger pool
of theoretical descriptors. The descriptors are calculated
solely from molecular structures: directly from the molecular
formula in the case of constitutional and topological descrip-
tors and utilizing the molecular 3D geometry for geometrical
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descriptors. CODESSA PRO is implemented with a semiem-
pirical quantum-chemical program CMOPAC, which is based
on MOPAC version 7 (Stewart, J.J.P. MOPAC Program
Package, QCPE 1989, No. 455). Structures in CODESSA
PRO are used to calculate constitutional, topological, geo-
metrical, thermodynamic, quantum chemical, and electro-
static descriptors. MOPAC, named from an acronym for
Molecular Orbital Package, is a general-purpose semiem-
pirical quantum mechanics package for the study of chemical
properties and reactions in gas, solution, and solid state.

9.2.3. CLUJTOPO

A new version of Clujtopo (2.0) is now ready and has a
job function which enables one to run over all molecules
within the work directory.206 It includes a routine for finding
molecular similarities, proteins included. This program is
designed to calculate descriptors from topological matrices
and/or polynomials. Several weighting schemes including
group electronegativity, group mass, and partial charges are
proposed. Topological indices derived from matrices such
as adjacency, distance, detour, distance-path, detour-path,
Cluj, their reciprocal matrices, walk-matrices, layer-matrices,
and shell-matrices are obtained with this package. It starts
from the Hyper-Chem figure of the molecule and derives
from there the vast array of matrices. The package has been
developed at the Faculty of Chemistry and Chemical
Engineering of the University of Cluj, Romania, by Diudea,
M. (diudea@chem.ubbcluj.ro), Ursu, O., and Levente, C. The
name is a contraction ofCluj and topology.

9.2.4. DRAGON

Dragon is a regularly updated application16 for the calcula-
tion of molecular descriptors. The new 2003 version
DRAGON 4 calculates 1612 molecular descriptors divided
into 20 logical blocks, among which are topological descrip-
tors, constitutional descriptors, walk and path counts, con-
nectivity indices, information indices, edge adjacency indices,
topological charge indices, eigenvalue-based indices, Randic´
molecular profiles, geometrical descriptors, charge descrip-
tors, etc. Principal components (PCs) can also be calculated
on the molecular descriptor blocks, and any user-defined
descriptor/response file can be added to the calculated
descriptor. The program includes interactive graph menus
as well as histogram graphs and univariate statistics. Line
plots and 2D- and 3D-scatter-plots are also available,
allowing a preliminary analysis of molecule distribution in
the descriptor or PC space, as well as a preliminary
correlation analysis when user-defined responses have al-
ready been loaded. The name Dragon is taken from the Ishtar
gate of Babylon at the Pergamon Museum in Berlin. The
main figure of this gate is a dragon. This software is
distributed by Talete srl, a private company which provides
software, consulting, seminars, and courses in QSAR and
chemometrics. This program has been developed by the
Milano Chemometrics and QSAR research group, headed
by Todeschini, R., Department of Environmental Sciences,
University of Milano-Bicocca (roberto.todeschini@unimib.it
or www.disat.unimib.it/chm/Dragon4.htm). This research
group, which edits the officialBulletin of the International
Academy of Mathematical Chemistry(IAMC), also organizes
a school on molecular descriptors and chemometrics, with
an introduction to Dragon and other types of software. The
Milano Chemometrics and QSAR research groupregularly
updates the Dragon book and the software as well as the

published literature in mathematical chemistry (it seems that
up to now it has collected more than 7000 references). This
group has recently introduced a website (www.molecular
descriptors.eu/index.htm) dedicated to all those scientists
working in the field of molecular descriptors. The head of
the group, Roberto Todeschini, is the actual president of the
IAMC.

9.2.5. MOLGEN-4.0
This is the latest version of a series of the MOLGEN

(molecular Generator; MOLGEN 5.0 is on release) project
that has now run for 17 years and which is widely used in
industry and academia. The 1997 MOLGEN 3.5 version was
awarded as the best scientific software for chemists. This
program is devoted to the computation of all structural
formulas ()connectivity isomers) that correspond to a given
molecular formula and, optionally, satisfy additional condi-
tions such as prescribed and forbidden substructures. It has
several components: (i) a generator for chemical graphs, (ii)
a generator for connectivity isomers, (iii) a graphical
molecule editor and 2D-display, (iv) a display for 3D-
placements using energy optimization, and (v) a generator
for all configurational isomers. It is also available in an
educational version. A version of MOLGEN has been
developed for the simulation of combinatorial chemistry and
the optimization of such experiments. A MOLGEN-CID
(MOLGEN-ChemicalIdentifier) program has recently been
developed and is freely accessible for use via the Internet.
It works on hydrogen-suppressed graphs and uses information
on bond multiplicity. Thus, the output does not contain
hydrogen atoms. The MOLGEN software family has been
developed at the University of Bayreuth, Germany, by
Kerber, A.; Laue, R.; and Ruckdeschel, A. (http://www.mol-
gen.de/).

9.2.6. MOLCONN-Z
MOLCONN is the acronym forMolecular ConnectiVity.

A modern version of Molconn-Z is marketed by eduSoft LC
QSAR Software (www.edusoft-lc.com/toolkits or haney@
hbond.com) and includes the largest extant set of Kier and
Hall descriptors, originally developed by Kier and Hall 20
years ago and subsequently improved by them. It also
includes E-State (i.e., atom- and group-type) descriptors,
H-bond (i.e., donor and acceptor) descriptors, polarity
descriptors, and 3D QSAR descriptor fields. The MOL-
CONN-Z software was designed to carry out the computation
of a wide range of topological indices of molecular structure,
such as theø indices, theκ shape indices, the electrotopo-
logical state indicesIS and ES, the hydrogen electrotopo-
logical state indices, topological equivalence indices, counts
of graph paths, several information indices such as the
Shannon and the Bonchev-Trinajstic´ information indices, and
other indices. The authors, L.H. Hall and L.B. Kier
(hall@enc.edu, kier@gems.vcu.edu) have recently authored
a book57 which is marketed with a CD for the computation
of the IS andES atom-based indices.

9.2.7. TOPS-MODE and MODesLab
These are products developed by Estrada and by Estrada

et al., at the University of Santiago de Campostela, Spain.
Modeslab studio (2002, version 1.0 b) (Estrada66@

yahoo.com; www.modeslab.com/, accessed March 2004)) is
the marketing studio and provides all the necessary tools for
performing QSAR studies, starting with the input of a large
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number of molecules and going on to the calculation of
molecular descriptors, property prediction, and substructural
analysis.207-210 It also provides a way to define the properties
of atoms, bonds, and fragments by an extension of the
SMILES language, and to use them in molecular descriptor
calculations. TOPS-MODE is an acronym forTopological
Substructural Molecular Design. This method is based on
the computation of the spectral moments of the bond
adjacency matrix with the appropriate weights for each
molecule in the data set. The bond adjacency matrix is a
square symmetric matrix whose nondiagonal entries are one
or zero if the corresponding bonds share an atom or not,
respectively. The main diagonal entries are bond weights
describing the hydrophobic/polarity, electronic, and steric
features of compounds. The spectral moments are defined
as the trace, i.e., the sum of the main diagonal entries, of
the corresponding powers of the bond adjacency matrix. A
table is generated in which the rows correspond to the
compounds and the columns to the spectral moments. The
program extracts QSPR/QSAR relationships by using
linear or nonlinear multivariate statistical methods, and it
tests the predictive QSPR models with cross-validation
techniques. Further, it draws the hydrogen-depleted molecular
graphs for each molecule of the data set. The bond weights
are used in order to differentiate the molecular bonds,
e.g., bond distances, bond dipoles, polarizabilities, and thus
allow the derivation of meaningful information about the
partition coefficient, polar surface area, polarizability,
Gasteiger-Marsili atomic charges, van der Waals
atomic radii, molar refraction, and Abraham molecular
descriptors. Recently, there was an interesting debate at the
Internet Electronic Conference of Molecular Design 2003
(www.biochempress..com/iecmd_2003.html, accessed Janu-
ary 2004) about the possibilities of TOPS-MODE and
DRAGON 2.1 descriptors in QSAR.

9.2.8. The Variable Connectivity Index

This computer program was designed for efficient com-
putation of the variable connectivity index mentioned in
previous paragraphs. It was designed by Kezele, N.
(nenad@joker.irb.hr); Klasinc´, L.; von Knop, J.; Ivanisˇ, S.;
and Nikolić, S. at the Rudjer Bosˇković Institute, Zagreb,
Croatia.70

9.2.9. Toolkit

This is a program that accompanies the bookHandbook
for Estimating Physicochemical Properties of Organic
Compounds.29 The aim of this program is to provide the
readers of the book with the opportunity to try some of the
methods described in the book or to apply them to their own
problems. In addition to this, Toolkit offers several features
to help in determination of desired physicochemical proper-
ties. For example, Toolkit includes the Registry of Physi-
cochemical Data, containing data for more than 24 000
compounds. Toolkit also includes powerful tools for generat-
ing three-dimensional models of compounds from SMILES
codes imported from external editors or from your pictures
drawn with external chemical editors such as CS ChemDraw,
ISIS Draw, and ChemWindow.

9.3. Mathematical Chemistry Monographs

A mathematical chemistry monograph (MCM) is not a
program but instead is a series of books on different topics

in mathematical chemistry that are published in connection
with the journal MATCH (MATCH Communications in
Mathematical and in Computer Chemistry). Four numbers
have already been published. MATCH is an international
journal which contains original research papers on various
applications of mathematics in chemistry, especially graph
theory, but also including mathematical research inspired by
chemical problems as well as the development of chemistry-
related algorithms and computer software, and also the
historical aspects thereof. MATCH was founded by Oskar
E. Polansky in October 1975, and its actual editor is Ivan
Gutman. The publisher of the MCM series is the University
of Kragujevac and Faculty of Science Kragujevac. Those
interested in the series should contact match@kg.ac.yu. The
following four volumes have already been edited:

Vol. 1: Li, X.; Gutman, I. Mathematical Aspects of
Randić-Type Molecular Structure Descriptors.

Vol. 2: Pogliani, L.Numbers Zero, One, Two, and Three
in Science and Humanities.

Vol. 3: Janezic´, D.; Milicević, A.; Nikolić, S.; Trinajstić,
N. Graph-Theoretical Matrices in Chemistry.

Vol. 4: Fujita, S.Diagrammatical Approach to Molecular
Symmetry and Enumeration of Stereoisomers.

10. Note Added in Proof
Recently, it has been published that a novel antineoplasic

quinoline designed by molecular topology, MT477, is in
preclinical trials (Jasinski, P.; Welsh, B.; Galvez, J.; Land,
D.; Zwolak, P.; Ghandi, L.; Terai, K.; Dudeck, A. Z.InVest.
New Drugs2007, Oct. 24).
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